

Universal Serial Bus
 Device Class Definition

for
Video Devices

Revision 1.1

June 1, 2005

USB Device Class Definition for Video Devices

Contributors
Abdul R. Ismail Intel Corp.
Akihiro Tanabe Canon Inc.
Anand Ganesh Microsoft Corp.
Andy Hodgson STMicroelectronics
Anshuman Saxena Texas Instruments
Bertrand Lee Microsoft Corp.
Charng Lee Sunplus Technology Co., Ltd
David Goll Microsoft Corp.
Eric Luttmann Cypress Semiconductor Corp.
Fernando Urbina Apple Computer Inc.
Geert Knapen Philips Electronics
Geraud Mudry Logitech Inc.
Hiro Kobayashi Microsoft Corp.
Jean-Michel Chardon Logitech Inc.
Jeff Zhu Microsoft Corp.
Ken-ichiro Ayaki Fujifilm
Mitsuo Niida Canon Inc.
Nobuo Kuchiki Sanyo Electric Co., Ltd
Olivier Lechenne Logitech Inc.
Paul Thacker STMicroelectronics
Remy Zimmermann Logitech Inc.
Shinichi Hatae Canon Inc.
Steve Miller STMicroelectronics
Tachio Ono Canon Inc.
Takashi Sato Philips Electronics
Yoichi Hirata Matsushita Electric Industrial Co., Ltd

Revision 1.1 June 1, 2005 ii

USB Device Class Definition for Video Devices

Copyright © 2001, 2002, 2003, 2004, 2005 USB Implementers Forum
All rights reserved.

INTELLECTUAL PROPERTY DISCLAIMER

THIS SPECIFICATION IS PROVIDED "AS IS" WITH NO WARRANTIES
WHATSOEVER INCLUDING ANY WARRANTY OF MERCHANTABILITY, FITNESS
FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING
OUT OF ANY PROPOSAL, SPECIFICATION, OR SAMPLE.

A LICENSE IS HEREBY GRANTED TO REPRODUCE AND DISTRIBUTE THIS
SPECIFICATION FOR INTERNAL USE ONLY. NO OTHER LICENSE, EXPRESS OR
IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY OTHER INTELLECTUAL
PROPERTY RIGHTS IS GRANTED OR INTENDED HEREBY.

AUTHORS OF THIS SPECIFICATION DISCLAIM ALL LIABILITY, INCLUDING
LIABILITY FOR INFRINGEMENT OF PROPRIETARY RIGHTS, RELATING TO
IMPLEMENTATION OF INFORMATION IN THIS SPECIFICATION. AUTHORS OF
THIS SPECIFICATION ALSO DO NOT WARRANT OR REPRESENT THAT SUCH
IMPLEMENTATION(S) WILL NOT INFRINGE SUCH RIGHTS.

All product names are trademarks, registered trademarks, or service marks of their respective
owners.

Revision 1.1 June 1, 2005 iii

USB Device Class Definition for Video Devices

Revision History

Version Date Description
1.0 September 4,

2003
Initial release

1.0a December 4,
2003

Table A.5: Added extension reference row
Table A.6: Added USB extension row
Table A.6: Defined VS_FORMAT_MPEG4SL as 0x0B
Added section A,9.8 for selectors extensibility
Table B.1, B.2, B3 & B4: Added extension row
Added Appendix D. Revision history

1.1 June 1st, 2005 Added GET_INFO request for VideoStreaming interface
Updated Table 4-56 Stream Error Code Control
Updated Table 3-8 to correct the wMaxMultiplier description
Add support for multiple clock frequencies (RR0033)
Latency optimizations for Stream-based formats (RR0041)
Define Probe/Commit controls for Render (RR0042)
Add Analog Video Standard and Status Control (RR0044)
Define constraints on RES value (RR0047)
Detail behavior of Multiplier and Limit Multiplier (RR0048)
Cosmetic changes to Terminal and Unit Descriptors (RR0049)
Cosmetic and Functional changes(RR0050)
Clarify usage of bits in GET_INFO (RR0051)
Specify the meanings of Request Error Codes (RR0053)
Allows support for a revision of a Payload specification to be made
independently of the Core Specification.
Added three fields to the Video Probe And Commit Control
(RR0054).
Specification of Absolute and Relative Control relationship.
(RR057).
Specification of Asynchronous Controls’ behavior (RR0059).
Allow 0 for Payload Version in Probe and Commit Control
(RR0060).
Modified Table 2-6 Extended Field of the Payload Header, Table 3-
15 Payload Format Descriptor and Section 2.4.2.4 Still Image
Capture. (RR0066)
Remove “Driver” from Terms and abbreviation and added UVC.
Updated section 2.4.3.7, change VDC to UVC. Update section 3.7.2
and Table 3-3: Change bcdVDC with bcdUVC. (RR0064)
Corrected Statement regarding multiple clock support (RR0069).
Removed auto-update side-effect from Probe/Commit Frame
Interval field (RR0070).
Updated Descriptor Size inTable 3-8 Processing Unit Descriptor
(RR0072).
Updated range of reserved values in Table 4-43 Analog Video

Revision 1.1 June 1, 2005 iv

USB Device Class Definition for Video Devices

Standard Control (RR0072).
Remove reference to “Vendor Unique Payload Format” in Table 4-
47 Video Probe and Commit Controls (RR0072).
Marked obsolete format and frame descriptor type values as
reserved (VS_FORMAT_MPEG1, VS_FORMAT_MPEG2PS,
VS_FORMAT_MPEG4, VS_FORMAT_VENDOR,
VS_FRAME_VENDOR) in Table A- 6 Video Class-Specific VS
Interface Descriptor Subtypes (RR0072).
Added new format and frame descriptor types
(VS_FORMAT_FRAME_BASED,VS_FRAME_FRAME_BASED,
VS_FORMAT_STREAM_BASED) in Table A- 6 Video Class-
Specific VS Interface Descriptor Subtypes (RR0072).
Added new Processing Unit Controls
(PU_ANALOG_VIDEO_STANDARD_CONTROL,
PU_ANALOG_LOCK_STATUS_CONTROL) in Table A- 13
Processing Unit Control Selectors (RR0072).

Revision 1.1 June 1, 2005 v

USB Device Class Definition for Video Devices

Table of Contents
1 Introduction ... 1

1.1 Purpose ... 1
1.2 Scope .. 1
1.3 Related Documents .. 1
1.4 Document Conventions .. 1
1.5 Terms and Abbreviations ... 2

2 Functional Characteristics ... 4
2.1 Video Interface Class ... 4
2.2 Video Interface Subclass and Protocol... 4
2.3 Video Function Topology .. 5

2.3.1 Input Terminal .. 7
2.3.2 Output Terminal ... 7
2.3.3 Camera Terminal .. 8
2.3.4 Selector Unit... 8
2.3.5 Processing Unit... 9
2.3.6 Extension Unit .. 10

2.4 Operational Model.. 10
2.4.1 Video Interface Collection ... 11
2.4.2 VideoControl Interface... 11

2.4.2.1 Control Endpoint ... 12
2.4.2.2 Status Interrupt Endpoint... 12
2.4.2.3 Hardware Trigger Interrupts.. 14
2.4.2.4 Still Image Capture.. 14
2.4.2.5 Optical and Digital Zoom.. 16

2.4.2.5.1 Optical Zoom.. 16
2.4.2.5.2 Digital Zoom .. 18
2.4.2.5.3 Relationship between Optical and Digital Zoom ... 20
2.4.2.5.4 Absolute vs. Relative Zoom... 21

2.4.3 VideoStreaming Interface... 21
2.4.3.1 Stream Bandwidth Selection ... 22
2.4.3.2 Video and Still Image Samples ... 23

2.4.3.2.1 Sample Bulk Transfers ... 25
2.4.3.2.2 Sample Isochronous Transfers ... 27

2.4.3.3 Video and Still Image Payload Headers .. 31
2.4.3.4 Stream Synchronization and Rate Matching ... 34

2.4.3.4.1 Latency ... 34
2.4.3.4.2 Clock Reference ... 35
2.4.3.4.3 Presentation Time... 35

2.4.3.5 Dynamic Frame Interval Support .. 36
2.4.3.6 Dynamic Format Change Support ... 36
2.4.3.7 Data Format Classes .. 37

2.4.4 Control Transfer and Request Processing .. 37
3 Descriptors... 45

3.1 Descriptor Layout Overview.. 46
3.2 Device Descriptor... 46

Revision 1.1 June 1, 2005 vi

USB Device Class Definition for Video Devices

3.3 Device_Qualifier Descriptor .. 47
3.4 Configuration Descriptor.. 47
3.5 Other_Speed_Configuration Descriptor... 47
3.6 Interface Association Descriptor.. 47
3.7 VideoControl Interface Descriptors ... 48

3.7.1 Standard VC Interface Descriptor .. 48
3.7.2 Class-Specific VC Interface Descriptor ... 49

3.7.2.1 Input Terminal Descriptor ... 51
3.7.2.2 Output Terminal Descriptor... 52
3.7.2.3 Camera Terminal Descriptor ... 53
3.7.2.4 Selector Unit Descriptor .. 55
3.7.2.5 Processing Unit Descriptor.. 56
3.7.2.6 Extension Unit Descriptor ... 58

3.8 VideoControl Endpoint Descriptors... 59
3.8.1 VC Control Endpoint Descriptors .. 59

3.8.1.1 Standard VC Control Endpoint Descriptor.. 59
3.8.1.2 Class-Specific VC Control Endpoint Descriptor... 59

3.8.2 VC Interrupt Endpoint Descriptors .. 59
3.8.2.1 Standard VC Interrupt Endpoint Descriptor.. 59
3.8.2.2 Class-specific VC Interrupt Endpoint Descriptor.. 60

3.9 VideoStreaming Interface Descriptors ... 61
3.9.1 Standard VS Interface Descriptor... 61
3.9.2 Class-Specific VS Interface Descriptors .. 62

3.9.2.1 Input Header Descriptor .. 62
3.9.2.2 Output Header Descriptor.. 64
3.9.2.3 Payload Format Descriptors .. 65
3.9.2.4 Video Frame Descriptor .. 66
3.9.2.5 Still Image Frame Descriptor .. 66
3.9.2.6 Color Matching Descriptor.. 68

3.10 VideoStreaming Endpoint Descriptors... 69
3.10.1 VS Video Data Endpoint Descriptors .. 69

3.10.1.1 Standard VS Isochronous Video Data Endpoint Descriptor 69
3.10.1.2 Standard VS Bulk Video Data Endpoint Descriptor 70

3.10.2 VS Bulk Still Image Data Endpoint Descriptors.. 71
3.10.2.1 Standard VS Bulk Still Image Data Endpoint Descriptor 71

3.11 String Descriptors ... 72
4 Class-Specific Requests... 73

4.1 Request Layout... 73
4.1.1 Set Request ... 73
4.1.2 Get Request .. 74

4.2 VideoControl Requests .. 76
4.2.1 Interface Control Requests ... 77

4.2.1.1 Power Mode Control ... 77
4.2.1.2 Request Error Code Control .. 79

4.2.2 Unit and Terminal Control Requests.. 80
4.2.2.1 Camera Terminal Control Requests .. 81

Revision 1.1 June 1, 2005 vii

USB Device Class Definition for Video Devices

4.2.2.1.1 Scanning Mode Control ... 81
4.2.2.1.2 Auto-Exposure Mode Control.. 81
4.2.2.1.3 Auto-Exposure Priority Control ... 82
4.2.2.1.4 Exposure Time (Absolute) Control .. 82
4.2.2.1.5 Exposure Time (Relative) Control ... 83
4.2.2.1.6 Focus (Absolute) Control ... 84
4.2.2.1.7 Focus (Relative) Control .. 84
4.2.2.1.8 Focus, Auto Control ... 85
4.2.2.1.9 Iris (Absolute) Control ... 85
4.2.2.1.10 Iris (Relative) Control .. 86
4.2.2.1.11 Zoom (Absolute) Control ... 86
4.2.2.1.12 Zoom (Relative) Control .. 87
4.2.2.1.13 PanTilt (Absolute) Control... 88
4.2.2.1.14 PanTilt (Relative) Control.. 89
4.2.2.1.15 Roll (Absolute) Control.. 90
4.2.2.1.16 Roll (Relative) Control... 90
4.2.2.1.17 Privacy Control .. 91

4.2.2.2 Selector Unit Control Requests ... 92
4.2.2.3 Processing Unit Control Requests ... 92

4.2.2.3.1 Backlight Compensation Control ... 93
4.2.2.3.2 Brightness Control.. 93
4.2.2.3.3 Contrast Control ... 93
4.2.2.3.4 Gain Control... 94
4.2.2.3.5 Power Line Frequency Control .. 94
4.2.2.3.6 Hue Control .. 95
4.2.2.3.7 Hue, Auto Control .. 95
4.2.2.3.8 Saturation Control .. 96
4.2.2.3.9 Sharpness Control .. 96
4.2.2.3.10 Gamma Control .. 97
4.2.2.3.11 White Balance Temperature Control.. 97
4.2.2.3.12 White Balance Temperature, Auto Control.. 98
4.2.2.3.13 White Balance Component Control ... 98
4.2.2.3.14 White Balance Component, Auto Control ... 99
4.2.2.3.15 Digital Multiplier Control .. 99
4.2.2.3.16 Digital Multiplier Limit Control .. 99
4.2.2.3.17 Analog Video Standard Control... 100
4.2.2.3.18 Analog Video Lock Status Control .. 100

4.2.2.4 Extension Unit Control Requests .. 101
4.3 VideoStreaming Requests .. 102

4.3.1 Interface Control Requests ... 102
4.3.1.1 Video Probe and Commit Controls ... 103

4.3.1.1.1 Probe and Commit Operational Model .. 112
4.3.1.1.2 Stream Negotiation Examples.. 113

4.3.1.2 Video Still Probe Control and Still Commit Control 116
4.3.1.3 Synch Delay Control ... 117
4.3.1.4 Still Image Trigger Control ... 118

Revision 1.1 June 1, 2005 viii

USB Device Class Definition for Video Devices

4.3.1.5 Generate Key Frame Control... 119
4.3.1.6 Update Frame Segment Control .. 119
4.3.1.7 Stream Error Code Control.. 120

Appendix A. Video Device Class Codes .. 122
A.1. Video Interface Class Code... 122
A.2. Video Interface Subclass Codes .. 122
A.3. Video Interface Protocol Codes .. 122
A.4. Video Class-Specific Descriptor Types .. 122
A.5. Video Class-Specific VC Interface Descriptor Subtypes.. 122
A.6. Video Class-Specific VS Interface Descriptor Subtypes .. 123
A.7. Video Class-Specific Endpoint Descriptor Subtypes.. 123
A.8. Video Class-Specific Request Codes .. 124
A.9. Control Selector Codes.. 124

A.9.1. VideoControl Interface Control Selectors .. 124
A.9.2. Terminal Control Selectors... 124
A.9.3. Selector Unit Control Selectors .. 124
A.9.4. Camera Terminal Control Selectors ... 125
A.9.5. Processing Unit Control Selectors .. 125
A.9.6. Extension Unit Control Selectors ... 126
A.9.7. VideoStreaming Interface Control Selectors .. 126
A.9.8. Additional Control Selectors .. 126

Appendix B. Terminal Types.. 127
B.1. USB Terminal Types ... 127
B.2. Input Terminal Types .. 128
B.3. Output Terminal Types.. 128
B.4. External Terminal Types ... 129

Appendix C. Video and Still Image Formats.. 130
C.1. Supported video and still image formats ... 130
C.2. Proprietary video formats .. 130

Revision 1.1 June 1, 2005 ix

USB Device Class Definition for Video Devices

List of Tables
Table 2-1 Status Packet Format 13
Table 2-2 Status Packet Format (VideoControl Interface as the Originator) 13
Table 2-3 Status Packet Format (VideoStreaming Interface as the Originator) 14
Table 2-4 Summary of Still Image Capture Methods 16
Table 2-5 Format of the Payload Header 31
Table 2-6 Extended Fields of the Payload Header 32
Table 3-1 Standard Video Interface Collection IAD 48
Table 3-2 Standard VC Interface Descriptor 48
Table 3-3 Class-specific VC Interface Header Descriptor 50
Table 3-4 Input Terminal Descriptor 52
Table 3-5 Output Terminal Descriptor 53
Table 3-6 Camera Terminal Descriptor 54
Table 3-7 Selector Unit Descriptor 55
Table 3-8 Processing Unit Descriptor 56
Table 3-9 Extension Unit Descriptor 58
Table 3-10 Standard VC Interrupt Endpoint Descriptor 60
Table 3-11 Class-specific VC Interrupt Endpoint Descriptor 61
Table 3-12 Standard VS Interface Descriptor 61
Table 3-13 Class-specific VS Interface Input Header Descriptor 62
Table 3-14 Class-specific VS Interface Output Header Descriptor 64
Table 3-15 Payload Format Descriptor 65
Table 3-16 Defined Video Frame Descriptor Resources 66
Table 3-17 Still Image Frame Descriptor 67
Table 3-18 Color Matching Descriptor 68
Table 3-19 Standard VS Isochronous Video Data Endpoint Descriptor 69
Table 3-20 Standard VS Bulk Video Data Endpoint Descriptor 70
Table 3-21 Standard VS Bulk Still Image Data Endpoint Descriptor 71
Table 4-1 Set Request 73
Table 4-2 Get Request 75
Table 4-3 Defined Bits Containing Capabilities of the Control 75
Table 4-4 Interface Control Requests 77
Table 4-5 Power Mode Control 77
Table 4-6 Device Power Mode 78
Table 4-7 Request Error Code Control 79
Table 4-8 Unit and Terminal Control Requests 80
Table 4-9 Scanning Mode Control 81
Table 4-10 Auto-Exposure Mode Control 81
Table 4-11 Auto-Exposure Priority Control 82
Table 4-12 Exposure Time (Absolute) Control 83
Table 4-13 Exposure Time (Relative) Control 83
Table 4-14 Focus (Absolute) Control 84
Table 4-15 Focus (Relative) Control 85
Table 4-16 Focus, Auto Control 85
Table 4-17 Iris (Absolute) Control 86
Table 4-18 Iris (Relative) Control 86

Revision 1.1 June 1, 2005 x

USB Device Class Definition for Video Devices

Table 4-19 Zoom (Absolute) Control 87
Table 4-20 Zoom (Relative) Control 88
Table 4-21 PanTilt (Absolute) Control 88
Table 4-22 PanTilt (Relative) Control 89
Table 4-23 Roll (Absolute) Control 90
Table 4-24 Roll (Relative) Control 91
Table 4-25 Privacy Shutter Control 92
Table 4-26 Selector Unit Control Requests 92
Table 4-27 Backlight Compensation Control 93
Table 4-28 Brightness Control 93
Table 4-29 Contrast Control 94
Table 4-30 Gain Control 94
Table 4-31 Power Line Frequency Control 95
Table 4-32 Hue Control 95
Table 4-33 Hue, Auto Control 96
Table 4-34 Saturation Control 96
Table 4-35 Sharpness Control 97
Table 4-36 Gamma Control 97
Table 4-37 White Balance Temperature Control 97
Table 4-38 White Balance Temperature, Auto Control 98
Table 4-39 White Balance Component Control 98
Table 4-40 White Balance Component, Auto Control 99
Table 4-41 Digital Multiplier Control 99
Table 4-42 Digital Multiplier Limit Control 100
Table 4-43 Analog Video Standard Control 100
Table 4-44 Analog Video Lock Status Control 101
Table 4-45 Extension Unit Control Requests 101
Table 4-46 Interface Control Requests inside a Particular VideoStreaming Interface 102
Table 4-47 Video Probe and Commit Controls 103
Table 4-48 VS_PROBE_CONTROL Requests 112
Table 4-49 VS_COMMIT_CONTROL Requests 113
Table 4-50 Video Still Probe Control and Still Commit Control 116
Table 4-51 VS_STILL_PROBE_CONTROL Requests 117
Table 4-52 VS_STILL_COMMIT_CONTROL Requests 117
Table 4-53 Synch Delay Control 118
Table 4-54 Still Image Trigger Control 118
Table 4-55 Generate Key Frame Control 119
Table 4-56 Update Frame Segment Control 120
Table 4-57 Stream Error Code Control 120
Table A- 1 Video Interface Class Code 122
Table A- 2 Video Interface Subclass Codes 122
Table A- 3 Video Interface Protocol Codes 122
Table A- 4 Video Class-Specific Descriptor Types 122
Table A- 5 Video Class-Specific VC Interface Descriptor Subtypes 122
Table A- 6 Video Class-Specific VS Interface Descriptor Subtypes 123
Table A- 7 Video Class-Specific Endpoint Descriptor Subtypes 123

Revision 1.1 June 1, 2005 xi

USB Device Class Definition for Video Devices

Table A- 8 Video Class-Specific Request Codes 124
Table A- 9 VideoControl Interface Control Selectors 124
Table A- 10 Terminal Control Selectors 124
Table A- 11 Selector Unit Control Selectors 124
Table A- 12 Camera Terminal Control Selectors 125
Table A- 13 Processing Unit Control Selectors 125
Table A- 14 Extension Unit Control Selectors 126
Table A- 15 VideoStreaming Interface Control Selectors 126
Table B- 1 USB Terminal Types 127
Table B- 2 Input Terminal Types 128
Table B- 3 Output Terminal Types 128
Table B- 4 External Terminal Types 129

Revision 1.1 June 1, 2005 xii

USB Device Class Definition for Video Devices

List of Figures
Figure 2-1 Input Terminal Icon 7
Figure 2-2 Output Terminal Icon 8
Figure 2-3 Selector Unit Icon (2 input pins) 9
Figure 2-4 Processing Unit Icon 10
Figure 2-5 Extension Unit Icon 10
Figure 2-6 Relationship between Optical and Digital Zoom 20
Figure 2-7 Stream Bandwidth Selection 22
Figure 2-8 Protocol Layering and Abstraction 23
Figure 2-9 A Payload Transfer 24
Figure 2-10 Sample Bulk Read (Multiple Transfers per Sample) 25
Figure 2-11 Sample Bulk Read (Single Transfer per Sample) 26
Figure 2-12 Sample Bulk Write (Single Transfer per Sample) 26
Figure 2-13 Sample Isochronous Transfer, IN endpoint 27
Figure 2-14 Sample Isochronous Transfer, OUT endpoint 28
Figure 2-15 Sample Isochronous Transfer, IN endpoint 29
Figure 2-16 Sample Isochronous Transfer, OUT endpoint 30
Figure 2-17 Control Transfer Example (Case 1) 40
Figure 2-18 Control Transfer Example (Case 2) 41
Figure 2-19 Control Transfer Example (Case 3) 42
Figure 2-20 Control Transfer Example (Case 4) 43
Figure 2-21 Control Transfer Example (Case 5) 44
Figure 3-1 Video Camera Descriptor Layout Example 46
Figure 4-1 Successful USB Isochronous Bandwidth Negotiation 113
Figure 4-2 Failed USB Isochronous Bandwidth Negotiation 114
Figure 4-3 Dynamic Stream Settings Modification while Streaming 115

Revision 1.1 June 1, 2005 xiii

USB Device Class Definition for Video Devices

1 Introduction
1.1 Purpose
This document describes the minimum capabilities and characteristics that a video streaming
device must support to comply with the USB Video Class specification.

It defines and standardizes video streaming functionality on the USB, and contains all necessary
information for a designer to build a USB-compliant device that incorporates video streaming
functionality. It specifies the standard and class-specific descriptors that must be present in each
USB video function. It further explains the use of class-specific requests that allow for full video
streaming control.

Devices that conform to this specification will be referred to as USB Video Class devices.

1.2 Scope
The USB Device Class Definition for Video Devices applies to all devices or functions within
composite devices that are used to manipulate video and video-related functionality. This would
include devices such as desktop video cameras (or "webcams"), digital camcorders, analog video
converters, analog and digital television tuners, and still-image cameras that support video
streaming.

1.3 Related Documents
USB Specification Revision 2.0, April 27, 2000, www.usb.org
USB Device Class Definition for Audio Devices, Version 1.0, March 18, 1998, www.usb.org
Interface Association Descriptor ECN, www.usb.org
Universal Serial Bus Device Class Definition for Video Devices: Identifiers, www.usb.org

1.4 Document Conventions
The following typographic conventions are used:
• Italic Documents references
• Bold Request fields
• UPPERCASE Constants

The following terms are defined:
• Expected

a keyword used to describe the behavior of the hardware or software in the design models
assumed by this specification. Other hardware and software design models may also be
implemented

• May
a keyword that indicates flexibility of choice with no implied preference.

Revision 1.1 June 1, 2005 1

http://www.usb.org/
http://www.usb.org/
http://www.usb.org/
http://www.usb.org/

USB Device Class Definition for Video Devices

• Shall/Must
keywords indicating a mandatory requirement. Designers are required to implement all such
mandatory requirements.

• Should
a keyword indicating flexibility of choice with a strongly preferred alternative. Equivalent to
the phrase is recommended.

1.5 Terms and Abbreviations

Term Description
Configuration A collection of one or more interfaces that may be selected on a USB

device.
Control A logical object within an Entity that is used to manipulate a specific

property of that Entity.
CT Camera terminal.
Descriptor Data structure used to describe a USB device capability or

characteristic.
Device USB peripheral.
Endpoint Source or sink of data on a USB device.
Entity A Unit, Terminal or Interface within the video function, each of which

may contain Controls.
GUID Globally Unique Identifier. Also known as a universally unique

identifier (UUID). The Guidgen.exe command line program from
Microsoft is used to create a GUID. Guidgen.exe never produces the
same GUID twice, no matter how many times it is run or how many
different machines it runs on. Entities such as video formats that need to
be uniquely identified have a GUID. Search www.microsoft.com for
more information on GUIDs and Guidgen.exe.

Host Computer system where a Host Controller is installed.
Host Controller Hardware that connects a Host to the USB.
Host Software Generic term for a collection of drivers, libraries and/or applications that

provide operating system support for a device.
IAD Interface Association Descriptor. This is used to describe that two or

more interfaces are associated to the same function. An ‘association’
includes two or more interfaces and all of their alternate setting
interfaces.

Interface An Entity representing a collection of zero or more endpoints that
present functionality to a Host.

IT Input Terminal.
OT Output Terminal.
Payload Transfer In the context of the USB Video Class, a Payload Transfer is a unit of

data transfer common to bulk and isochronous endpoints. Each Payload
Transfer includes a Payload Header followed by Payload Data. For

Revision 1.1 June 1, 2005 2

http://www.microsoft.com/

USB Device Class Definition for Video Devices

isochronous endpoints, a Payload Transfer is contained in the data
transmitted during a single (micro)frame: up to 1023 bytes for a full-
speed endpoint; up to 1024 bytes for a high-speed endpoint; and up to
3072 bytes for a high-speed/high-bandwidth endpoint. For bulk
endpoints, a Payload Transfer is contained in the data transmitted in a
single bulk transfer (which may consist of multiple bulk data
transactions).

Payload Data Format-specific data contained in a Payload Transfer (excluding the
Payload Header).

Payload Header A header at the start of each Payload Transfer that provides data framing
and encapsulation information.

PU Processing Unit.
Request A mechanism supported by the video function for the host software to

interact with a Control within an Entity.
Sample Transfer A sample transfer is composed of one or more payload transfer(s)

representing a video sample.
STC Source Time Clock. The clock used by the data source that governs the

sampling of video (or related) data.
SU Selector Unit.
TD Terminal Descriptor.
Terminal An Entity representing a source (Input Terminal) or sink (Output

Terminal) for data flowing into or out of a video function.
UD Unit Descriptor.
Unit An Entity representing a transformation of data flowing through a video

function.
USB Universal Serial Bus.
USB Transaction See USB 2.0 Chapter 5.
USB Transfer See USB 2.0 Chapter 5.
UVC USB Video Class.
VC VideoControl; refers to the interface used for video function control.
VIC Video Interface Collection; refers to the collection of VideoControl and

VideoStreaming interfaces within the same video function.
VS VideoStreaming; refers to the interface(s) used for video stream

transport.
XU Extension Unit.

Revision 1.1 June 1, 2005 3

USB Device Class Definition for Video Devices

2 Functional Characteristics
The video function is located at the interface level in the device class hierarchy. It consists of a
number of interfaces grouping related pipes that together implement the interface to the video
function.

Video functions are addressed through their video interfaces. Each video function has a single
VideoControl (VC) interface and can have several VideoStreaming (VS) interfaces. The
VideoControl (VC) interface is used to access the device controls of the function whereas the
VideoStreaming (VS) interfaces are used to transport data streams into and out of the function.
The collection of the single VideoControl interface and the VideoStreaming interfaces that
belong to the same video function is called the Video Interface Collection (VIC). An Interface
Association Descriptor (IAD) is used to describe the Video Interface Collection.

2.1 Video Interface Class
The Video Interface class groups all functions that can interact with USB-compliant video data
streams. All functions that convert between analog and digital video domains can be part of this
class. In addition, those functions that transform USB-compliant video data streams into other
USB-compliant video data streams can be part of this class. Even analog video functions that are
controlled through USB belong to this class.

In fact, for a video function to be part of this class, the only requirement is that it exposes one
VideoControl Interface. No further interaction with the function is mandatory, although most
functions in the video interface class will support one or more optional VideoStreaming
interfaces for consuming or producing one or more video data streams.

The Video Interface class code is assigned by the USB. For details, see section A.1 "Video
Interface Class Code".

2.2 Video Interface Subclass and Protocol
The Video Interface class is divided into subclasses as identified by the Interface Subclass code.
The following two interface subclasses are defined in this specification.

• VideoControl Interface
• VideoStreaming Interface

The following Function Subclass is used in the Interface Association Descriptor (see section 3.6,
“Interface Association Descriptor”):

• Video Interface Collection

The Interface Protocol is not used and must be set to 0x00.

Revision 1.1 June 1, 2005 4

USB Device Class Definition for Video Devices

The assigned codes can be found in sections A.2, "Video Interface Subclass Codes" and A.3,
"Video Interface Protocol Codes" of this specification. All other subclass codes are unused and
reserved except code 0xFF, which is reserved for vendor-specific extensions.

2.3 Video Function Topology
To be able to manipulate the physical properties of a video function, its functionality must be
divided into addressable entities. The following two generic entities are identified:

• Units
• Terminals

Units provide the basic building blocks to fully describe most video functions. Video functions
are built by connecting together several of these Units. A Unit has one or more Input Pins and a
single Output Pin, where each Pin represents a cluster of logical data streams inside the video
function. Units are wired together by connecting their I/O Pins according to the required
topology. A single Output Pin can be connected to one or more Input Pins (fan-out allowed).
However, a single Input Pin can only be connected to one Output Pin (fan-in disallowed). Loops
or cycles within the graph topology are not allowed.

In addition, the concept of Terminal is introduced. There are two types of Terminals. An Input
Terminal (IT) is an entity that represents a starting point for data streams inside the video
function. An Output Terminal (OT) represents an ending point for data streams. From the video
function’s perspective, a USB endpoint is a typical example of an Input Terminal or Output
Terminal. It either provides data streams to the video function (IT) or consumes data streams
coming from the video function (OT). Likewise, a Charge Coupled Device (CCD) sensor, built
into the video function is represented as an Input Terminal in the video function’s model.
Connection to a Terminal is made through its single Input Pin or Output Pin.

Input Pins of a Unit are numbered starting from one up to the total number of Input Pins on the
Unit. The Output Pin number is always one. Terminals have one Input or Output Pin that is
always numbered one.

The information traveling over I/O Pins is not necessarily of a digital nature. It is possible to use
the Unit model to describe fully analog or even hybrid video functions. The mere fact that I/O
Pins are connected together is a guarantee (by construction) that the protocol and format, used
over these connections (analog or digital), is compatible on both ends.

Every Unit in the video function is fully described by its associated Unit Descriptor (UD). The
Unit Descriptor contains all necessary fields to identify and describe the Unit. Likewise, there is
a Terminal Descriptor (TD) for every Terminal in the video function. In addition, these
descriptors provide all necessary information about the topology of the video function. They
fully describe how Terminals and Units are interconnected.

The descriptors are further detailed in section 3, "Descriptors" of this document.

Revision 1.1 June 1, 2005 5

USB Device Class Definition for Video Devices

This specification describes the following types of standard Units and Terminals that are
considered adequate to represent most video functions available today and in the near future:

• Input Terminal
• Output Terminal
• Selector Unit
• Processing Unit
• Extension Unit

Also, there are certain special Terminals that extend the functionality of the basic Input and
Output Terminals. These special Terminals support additional Terminal Descriptor fields and
Requests that are specific to the extended features these Terminals provide. These include:

• Media Transport Terminal (defined in USB Device Class Definition for Video Media
Transport Terminal specification)

• Camera Terminal

The types of Units defined in this specification could be extended in future revisions, or via
companion specifications. For example, a Tuner Unit could be added as a companion
specification to accommodate devices with TV Tuners.

Inside a Unit or Terminal, functionality is further described through Video Controls. A Control
typically provides access to a specific video property. Each Control has a set of attributes that
can be manipulated or that present additional information about the behavior of the Control.
Controls have attributes, which might include:

• Current setting
• Minimum setting
• Maximum setting
• Resolution
• Size
• Default

Consider a Brightness Control inside a Processing Unit. By issuing the appropriate requests, the
Host software can obtain values for the Brightness Control’s attributes and, for instance, use
them to correctly display the Control in a User Interface. Setting the Brightness Control’s current
setting attribute allows the Host software to change the brightness of the video that is being
streamed.

The ensemble of Unit Descriptors, Terminal Descriptors and Video Controls provide a full
description of the video function to the Host. A generic class driver shall be able to fully control
the video function. When functionality is represented by Extension Units, the class driver shall

Revision 1.1 June 1, 2005 6

USB Device Class Definition for Video Devices

permit access to vendor-specific extensions via a pass-through mechanism. The implementation
details of such a class driver are beyond the scope of this specification.

2.3.1 Input Terminal
The Input Terminal (IT) is used as an interface between the video function’s "outside world" and
other Units inside the video function. It serves as a receptacle for data flowing into the video
function. Its function is to represent a source of incoming data after this data has been extracted
from the data source. The data may include audio and metadata associated with a video stream.
These physical streams are grouped into a cluster of logical streams, leaving the Input Terminal
through a single Output Pin.

An Input Terminal can represent inputs to the video function other than USB OUT endpoints. A
CCD sensor on a video camera or a composite video input is an example of such a non-USB
input. However, if the video stream is entering the video function by means of a USB OUT
endpoint, there is a one-to-one relationship between that endpoint and its associated Input
Terminal. The class-specific Output Header descriptor contains a field that holds a direct
reference to this Input Terminal (see section 3.9.2.2, “Output Header Descriptor”). The Host
needs to use both the endpoint descriptors and the Input Terminal descriptor to get a full
understanding of the characteristics and capabilities of the Input Terminal. Stream-related
parameters are stored in the endpoint descriptors. Control-related parameters are stored in the
Terminal descriptor.

The symbol for the Input Terminal is depicted in the following figure.

Figure 2-1 Input Terminal Icon

outgoing data. The video data stream enters the

ints.

s

2.3.2 Output Terminal
The Output Terminal (OT) is used as an interface between Units inside the video function and
the "outside world". It serves as an outlet for video information, flowing out of the video
unction. Its function is to represent a sink of f

Output Terminal through a single Input Pin.

An Output Terminal can represent outputs from the video function other than USB IN endpo
A Liquid Crystal Display (LCD) screen built into a video device or a composite video out
connector are examples of such an output. However, if the video stream is leaving the video
function by means of a USB IN endpoint, there is a one-to-one relationship between that
endpoint and its associated Output Terminal. The class-specific Input Header descriptor contain
a field that holds a direct reference to this Output Terminal (see section 3.9.2.1, “Input Header
Descriptor”). The Host needs to use both the endpoint descriptors and the Output Terminal

Revision 1.1 June 1, 2005 7

USB Device Class Definition for Video Devices

descriptor to fully understand the characteristics and capabilities of the Output Terminal. Stream-
related parameters are stored in the endpoint descriptors. Control-related parameters are stored in

e Terminal descriptor.

he symbol for the Output Terminal is depicted in the following figure.

th

T

Figure 2-2 Output Terminal Icon

s
ed as an

nput Terminal with a single output pin. It provides support for the following features.

essive or Interlaced)

riority
re Time

-Focus

• Tilt

on state,

 in
ocus mode), the control shall

emain at the value that was in effect just before the transition.

 among a number of sources. It
as an Input Pin for each source stream and a single Output Pin.

2.3.3 Camera Terminal
The Camera Terminal (CT) controls mechanical (or equivalent digital) features of the device
component that transmits the video stream. As such, it is only applicable to video capture device
with controllable lens or sensor characteristics. A Camera Terminal is always represent
I

• Scanning Mode (Progr
• Auto-Exposure Mode
• Auto-Exposure P
• Exposu
• Focus
• Auto
• Iris
• Zoom
• Pan
• Roll

Support for any particular control is optional. The Focus control can optionally provide support
for an auto setting (with an on/off state). If the auto setting is supported and set to the
the device will provide automatic focus adjustment, and read requests will reflect the
automatically set value. Attempts to programmatically set the Focus control are ignored when
auto mode. When leaving Auto-Focus mode (entering manual f
r

2.3.4 Selector Unit
The Selector Unit (SU) selects from n input data streams and routes them unaltered to the single
output stream. It represents a source selector, capable of selecting
h

Revision 1.1 June 1, 2005 8

USB Device Class Definition for Video Devices

The symbol for the Selector Unit is depicted in the following figure.

Figure 2-3 Selector Unit Icon (2 input pins)

he t (PU) controls image attributes of the video being streamed through it. It has
a single input and output pin. It provides support for the following features:

e ls
tness

n

•

re
ponent

ight Compensation

atically set the related control are ignored when the control is in
lue that was in

2.3.5 Processing Unit
T Processing Uni

Us r Contro
• Brigh
• Contrast
• Hue
• Saturatio
• Sharpness
 Gamma

• Digital Multiplier (Zoom)

Auto Controls
• White Balance Temperatu
• White Balance Com
• Backl

Other
• Gain
• Power Line Frequency
• Analog Video Standard
• Analog Video Lock Status

Support for any particular control is optional. In particular, if the device supports the White
Balance function, it shall implement either the White Balance Temperature control or the White
Balance Component control, but not both. The User Controls indicate properties that are
governed by user preference and not subject to any automatic adjustment by the device. The
Auto Controls will provide support for an auto setting (with an on/off state). If the auto setting
for a particular control is supported and set to the on state, the device will provide automatic
adjustment of the control, and read requests to the related control will reflect the automatically
set value. Attempts to programm
auto mode. When leaving an auto mode, the related control shall remain at the va
effect just before the transition.

Revision 1.1 June 1, 2005 9

USB Device Class Definition for Video Devices

The symbol for the Processing Unit is depicted in the following figure.

Figure 2-4 Processing Unit Icon

XU) is the method provided by this specification to add vendor-specific
uilding blocks to the specification. The Extension Unit can have one or more Input Pins and has

e presence of these extensions to vendor-supplied client
oftware, and provide a method for sending control requests from the client software to the Unit,

The symbol for the Extension Unit is depicted in the following figure.

2.3.6 Extension Unit
The Extension Unit (
b
a single Output Pin.

Although a generic host driver will not be able to determine what functionality is implemented in
the Extension Unit, it shall report th
s
and receiving status from the unit.

Figure 2-5 Extension Unit Icon

ibed by an Interface Association Descriptor. If the device

 to

io function, while another interface collection deals with its

2.4 Operational Model
A device can support multiple configurations. Within each configuration can be multiple
interfaces, each possibly having alternate settings. These interfaces can pertain to different
functions that co-reside in the same composite device. Several independent video functions can
exist in the same device. Interfaces that belong to the same video function are grouped into a
Video Interface Collection descr
contains multiple independent video functions, there must be multiple Video Interface
Collections (and hence multiple Interface Association Descriptors), each providing full access
their associated video function.

As an example of a composite device, consider a desktop camera equipped with a built in
microphone. Such a device could be configured to have one interface collection dealing with
configuration and control of the aud
video aspects. One of those, the VideoControl interface, is used to control the inner workings of
the function, whereas the other, the VideoStreaming interface, handles the data traffic received
from the camera video subsystem.

Revision 1.1 June 1, 2005 10

USB Device Class Definition for Video Devices

Video Interface Collections can be dynamic in devices that support multiple operating mod
Because the VideoControl interface, together with its associated VideoStreaming interface(s),
constitutes the ‘logical interface’ to the video function, they must all come into existence at the

es.

me moment in time. Changing the operating mode of a device causes the previous Video

s stated earlier, video functionality is located at the interface level in the device class hierarchy.
ideo Interface Collection, containing a single VideoControl

ion
ming

 returned as part of the device’s
omplete configuration descriptor in response to a GetDescriptor (Configuration) request. The
nterface Association Descriptor must be located before the VideoControl Interface and its

aces (including all alternate settings). All of the interface

eoControl Interface
To
Units a
functio ose a single VideoControl interface. This interface can contain the following
end i

• te of
tion. This endpoint is mandatory, and the default endpoint 0 is used for this

purpose.

internals of the video function.
ll requests that are concerned with the manipulation of certain Video Controls within the video

 descriptors related to the internals of the video function are part of the
lass-specific VideoControl interface descriptor.

ngle alternate setting for the VideoControl interface, the default

sa
Interface Collection to be replaced with a new Video Interface Collection, followed by re-
initialization of the host software. This specification does not provide a mechanism for the host
to initiate such a mode change, which is typically initiated via a physical switch on the device.

A
The following sections describe the V
interface and optional VideoStreaming interfaces, together with their associated endpoints that
are used for video function control and for data stream transfer.

2.4.1 Video Interface Collection
A device must use an Interface Association Descriptor to describe a Video Interface Collect
for each device function that requires a VideoControl Interface and one or more VideoStrea
interfaces. The Interface Association Descriptor must always be
c
I
associated VideoStreaming Interf
numbers in the set of associated interfaces must be contiguous.

2.4.2 Vid

control the functional behavior of a particular video function, the Host can manipulate the
nd Terminals inside the video function. To make these objects accessible, the video
n must exp

po nts.
A control endpoint for manipulating Unit and Terminal settings and retrieving the sta
the video func

• An interrupt endpoint for status returns. This endpoint is optional, but may be mandatory
under certain conditions. See section 2.4.2.2, "Status Interrupt Endpoint" for further
information.

The VideoControl interface is the single entry point to access the
A
function’s Units or Terminals must be directed to the VideoControl interface of the video
function. Likewise, all
c

This specification defines a si
alternate setting zero.

Revision 1.1 June 1, 2005 11

USB Device Class Definition for Video Devices

2.4.2.1 Control Endpoint
The video interface class uses endpoint 0 (the default pipe) as the standard way to control the

n uests. These requests are always directed to one of the

 endpoint to inform the Host
bout the status of the different addressable entities (Terminals, Units, interfaces and endpoints)

ndpoint, if present, is used by the entire Video Interface
Col t rol
interfac ace for the Collection.

This interrupt endpoint is mandatory if:

ts").
• The device implements any AutoUpdate controls (controls supporting device initiated

rrupt
and bOriginator fields contain information about the originator of the

terrupt. The bEvent field contains information about the event triggering the interrupt. If the

riginator
eld is set to zero, the virtual entity interface is the originator. This can be used to report global

tor field contains the interface number of the VideoStreaming interface. This scheme is
nambiguous because Units and Terminals are not allowed to have an ID of zero.

tton
press events defined as described in the table below.

video fu ction using class-specific req
Units or Terminals that make up the video function. The format and contents of these requests
are detailed further in this document.

2.4.2.2 Status Interrupt Endpoint
A USB VideoControl interface can support an optional interrupt
a
inside the video function. The interrupt e

lec ion to convey status information to the Host. It is considered part of the VideoCont
e because this is the anchor interf

• The device supports hardware triggers for still image capture (see section 2.4.2.3,
"Hardware Trigger Interrup

changes).
• The device implements any Asynchronous controls (see section 2.4.4, "Control Transfer

and Request Processing").

The interrupt packet is a variable size data structure depending on the originator of the inte
status. The bStatusType
in
originator is the Video Control interface, the bSelector field reports the Control Selector of the
control that issued the interrupt. Any addressable entity inside a video function can be the
originator.

The contents of the bOriginator field must be interpreted according to the code in D3..0 of the
bStatusType field. If the originator is the VideoControl interface, the bOriginator field contains
the Terminal ID or Unit ID of the entity that caused the interrupt to occur. If the bO
fi
VideoControl interface changes to the Host. If the originator is a VideoStreaming interface, the
bOrigina
u

If the originator is the VideoControl interface, the bAttribute field indicates the type of Control
change.

The contents of the bEvent field must also be interpreted according to the code in D3..0 of the
bStatusType field. If the originator is the VideoStreaming interface, there are additional bu

Revision 1.1 June 1, 2005 12

USB Device Class Definition for Video Devices

For all originators, there is a Control Change event defined. Controls that support this event will

igger an interrupt when a host-initiated or externally-initiated control change occurs. The
nge is completed

by d

A Cont

• The Control state can be changed independently of host control.
he

vice
t for the Control Change event for any particular control via the GET_INFO

ttribute (see section 4.1.2, "Get Request"). Section 2.4.4, "Control Transfer and Request
sfers (Requests) and Control

Change events.

lowin s spe e form e status packet.

s
Offset Field Size Value ription

tr
interrupt shall only be sent when the operation corresponding to the control cha

the evice.

rol shall support Control Change events if any of the following is true:

• The Control can take longer than 10ms from the start of the Data stage through t
completion of the Status stage when transferring to the device (SET_CUR operations).

If a control is required to support Control Change events, the event shall be sent for all
SET_CUR operations, even if the operation can be completed within the 10ms limit. The de
indicates suppor
a
Processing" describes in detail the interaction of Control Tran

The fol g table cify th at of th

Table 2-1 Statu Packet Format
Desc

0 bStatusType 1 Bitmap/Number

trol interface
 2 = VideoStreaming interface

D7..4: Reserved
D3..0: Originator
 0 = Reserved
 1 = VideoCon

1 it or Interface that bOriginator 1 Number ID of the Terminal, Un
reports the interrupt

When the o r is a Cont face, the rest of struct

-2 Stat Pack t (Vide e Originator)
fset ze e Description

riginato Video rol Inter ure is:

Table 2 us et Forma oControl Interface as th
Of Field Si Valu
2 bEvent 1 Number

ed
0x00: Control Change
0x01 – 0xFF: Reserv

3 bSelector 1 Number Control Change
Report the Control Selector of the control that
issued the interrupt.

4 bAttribute 1 Number nge:
ge

0x01: Control info change
0x02: Control failure change
0x03 – 0xFF: Reserved

Specify the type of control cha
0x00: Control value chan

Revision 1.1 June 1, 2005 13

USB Device Class Definition for Video Devices

5 bValue n See control request description in section 4.2
"VideoControl Requests".

bAttribute: Description:
0x00 Equivalent to the result of a

GET_CUR request
0x01 Equivalent to the result of a

GET_INFO request
0x02 Equivalent to the result of a

GET_CUR request on
VC_REQUEST_ERROR_
CODE_CONTROL

When the originator is a Video Streaming Interface the rest of the structure is:

Table 2-3 Status Packet Format (VideoStreaming Interface as the Originator)
Offset Field Size Value Description

2 bEvent 1 Number All originators:
0x00 = Button Press
0x01 – 0xFF = Stream Error

3 bValue n Number Button Press: (n=1)
0x00: Button released
0x01: Button pressed

2.4.2.3 Hardware Trigger Interrupts
One of the defined usages of the Status Interrupt Endpoint is for hardware triggers to notify host
software to initiate still image capture. When the hardware detects a button press, for example,
the Status Interrupt Endpoint will issue an interrupt originating from the relevant
VideoStreaming interface. The event triggering the interrupt (button press or release) is indicated
in the interrupt packet. The default, initial state of the button is the "release" state.

The device will have to specify whether it supports hardware triggers, and how the Host software
should respond to hardware trigger events. These are specified in the class-specific descriptors
within the relevant VideoStreaming interface. See section 3, "Descriptors".

2.4.2.4 Still Image Capture
A common feature of video cameras is the support of still image capture associated with a video
stream. This can be initiated either by programmatic software triggers or hardware triggers.

Revision 1.1 June 1, 2005 14

USB Device Class Definition for Video Devices

Depending on the method used, the still image frame may have to be the same size as the video
frames that are being streamed. There are several supported methods of capturing the still image,
and the device will have to specify which method it supports in the class-specific descriptors
within the relevant VideoStreaming interface.

Method 1 - The host software will extract the next available video frame from the active video
pipe in the relevant VideoStreaming interface upon receiving the hardware trigger event. The
hardware does not interrupt or alter the video stream in this case. For this method, the still image
frame is always the same size as the video frames being streamed.

Method 2 – If the device supports higher-quality still images, it has the option of streaming still-
image-specific packets across the active video pipe. In this case, the host software will
temporarily suspend video streaming, select the optimal bandwidth alternate setting based on the
still probe/commit negotiation (subject to bandwidth availability), send a
VS_STILL_IMAGE_TRIGGER_CONTROL Set request with the "Transmit still image" option
(see section 4.3.1.4, "Still Image Trigger Control"), and prepare to receive the still image data.
The device transmits the still image data marked as such in the payload header (see section
2.4.3.2.2, "Sample Isochronous Transfers"). Once the complete still image is received, the host
software will then revert back to the original alternate setting, and resume video streaming.

Method 3 – This method enables the capture of higher-quality still images from a dedicated bulk
still image pipe. By doing so, the active streams would continue uninterrupted. There are two
cases covered by this method.

In the first case, the host software initiates the still image capture from the device. It does so by
issuing a VS_STILL_IMAGE_TRIGGER_CONTROL Set request with the "Transmit still image
via dedicated bulk pipe" option (see section 4.3.1.4, "Still Image Trigger Control"). In this case,
after issuing the request, the host will start receiving the still image from the bulk still image
endpoint of the relevant VideoStreaming interface. The device captures the high-quality still
image and transmits the data to the bulk still image endpoint. While transmission is occurring,
the bTrigger field of the VS_STILL_IMAGE_TRIGGER_CONTROL control shall remain as
"Transmit still image via dedicated bulk pipe". After transmission is complete, the device shall
reset the control to "Normal operation" and trigger a control change interrupt via the Status
Interrupt endpoint.

In the second case, the device initiates the still image transmission after detecting a hardware
trigger. When the hardware detects a button press, the Status Interrupt endpoint will issue an
interrupt originating from the relevant VideoStreaming interface. If the bTriggerUsage field of
the selected format descriptor is set as initiating still image capture, the device shall set the
bTrigger field of the VS_STILL_IMAGE_TRIGGER_CONTROL control to “Transmit still
image via dedicated bulk pipe”. The Host software should then begin receiving still image data
that was captured by the device after it received the interrupt. After transmission is complete, the
device shall reset the bTrigger field to “Normal operation”. The host software can abort data
transmission by issuing a VS_STILL_IMAGE_TRIGGER_CONTROL request with the “Abort

Revision 1.1 June 1, 2005 15

USB Device Class Definition for Video Devices

still image transmission” option. In either case, the device shall trigger a control change interrupt
via the Status Interrupt endpoint

The following table summarizes endpoint usage for the various methods of still image capture.

Table 2-4 Summary of Still Image Capture Methods
 Isochronous video data pipe Bulk video data pipe

Method 1 1 Isochronous (Video) 1 Bulk (Video)
Method 2 1 Isochronous (Video/Still) 1 Bulk (Video/Still)
Method 3 1 Isochronous (Video)

1 Bulk (Still)
1 Bulk (Video)
1 Bulk (Still)

2.4.2.5 Optical and Digital Zoom
Optical and digital zoom are functionally independent, so each will be discussed separately in the
following sections. Although functionally independent, users will expect a single zoom control
that integrates both.

2.4.2.5.1 Optical Zoom
Although lens groups can be quite sophisticated, this specification describes a simple two-lens
system, which is sufficient to model optical zoom. Given objective and ocular lens focal lengths
(Lobjective and Locular), magnification (M) can be calculated as follows:

Lobjective

M =
Locular

The objective lens is the one nearest the subject, while the ocular lens is the one nearest the
viewer, or in our case, the camera sensor. A zoom lens varies the objective focal length.

Since magnification is a ratio of the objective and ocular focal lengths, the Units used to specify
these focal lengths can be of any resolution supported by the device. In other words, these Units
do not need to be specified in real physical units (millimeters or fractions of inches). The only
requirement is that the two focal lengths are specified in the same units.

Note that when Lobjective < Locular, the lenses are at a wide-angle setting. The subject will appear
smaller than life, and the field of view will be wider.

Locular will be a device-specific constant value for each camera implementation, so it will be
specified within the static Camera Terminal descriptor. If a camera implements an optical zoom
function, Lobjective can vary within a specified range. In order to properly represent the range of

Revision 1.1 June 1, 2005 16

USB Device Class Definition for Video Devices

magnification, Lobjective will be specified as a range Lmin to Lmax, which will also be specified
within the static Camera Descriptor.

Finally, the variable position within the range of possible Lobjective values will be specified via a
dynamic Camera Zoom Control, as integral values Zmin, Zmax, Zstep, and Zcur. See sections
4.2.2.1.11, "Zoom (Absolute) Control" and 4.2.2.1.12, "Zoom (Relative) Control". This allows
the Units of the objective lens focal length to be de-coupled from the Units used to control zoom.
For simplicity, Zstep will be constrained to equal one (1). Values of Lmin and Lmax are constrained
to be non-zero integral numbers; however, for the purpose of the following calculations, Lcur will
be a real number.

Note: A typical choice for Locular would be half the length of a diagonal line of the imager (CCD,
etc.), however there is no requirement for this value to be a direct physical measurement.

Given a known Zcur, the current objective focal length (Lcur) can be calculated as follows:

(Lmax - Lmin) *
Lcur =

(Zmax - Zmin)

+ Lmin
(Zcur - Zmin)

From this, the relative magnification can be calculated as follows:

Lcur

M =
Locular

Working from the opposite direction, given a known magnification (M), Lcur can be calculated as
follows:

Lcur = M Locular*

From this, the current Zoom control value (Zcur) can be calculated as follows:

(Zmax - Zmin)

(Lmax - Lmin)
Zcur =

(Lcur - Lmin) + Zmin*

To further simplify the calculations, Zmin can be constrained to be zero (0). The camera designer
will choose the values and ranges of the remaining variables according to the capabilities of the
device.

Revision 1.1 June 1, 2005 17

USB Device Class Definition for Video Devices

As an example, substituting some plausible values for each of these variables:

Lmin = 800
Lmax = 10000
Zmin = 0
Zmax = 255

The current Objective focal length (Lcur) can be calculated as follows:

255

9200 *
Lcur =

Zcur
+ 800

The current Zoom control value (Zcur) can be calculated as follows:

255 (Lcur – 800) *
Zcur =

9200

When choosing a camera sensor to match a lens system, the camera designer may need to
consider a multiplier effect caused by a sensor that is smaller than the exit pupil of the ocular
lens. This multiplier will not be represented explicitly in the USB Video Class specification,
since its effect can be represented via adjustments to the Lobjective values.

Note The Zcur value can be mapped to the physical lens position sensor control/status register.

2.4.2.5.2 Digital Zoom
Digital zoom is applied after the image has been captured from the sensor. Thus, digital zoom is
independent of optical zoom, and is a function of either the Processing Unit or host post-
processing. Although digital zoom is independent of optical zoom, users have come to expect
that camera implementations will not apply digital zoom until full optical zoom has been realized.
This will be enforced by the host software. There is no requirement for the device to enforce this,
but it is recommended.

Digital zoom is represented as a multiplier of the current optical magnification of the captured
image. In order to change the amount of digital zoom, the multiplier is changed through a range
from 1 to some maximum value mmax, and mmax will be specified in the Processing Unit
Descriptor. The position within the range of possible values of multiplier m will be expressed via
a Processing Unit Digital Multiplier Control, as Z′min, Z′max, Z′step, and Z′cur. See section

Revision 1.1 June 1, 2005 18

USB Device Class Definition for Video Devices

4.2.2.3.15, "Digital Multiplier Control". This allows the multiplier resolution to be described by
the device implementation. Z′step will be constrained to equal one (1).

Given a known Z′cur, the current multiplier mcur can be calculated as follows:

(Z′cur - Z′min) (mmax - 1) *
mcur =

(Z′max - Z′min)

+ 1

From this, and referring to the optical zoom values of Lmax and Locular described in the previous
section, the total magnification M′ can be calculated as follows:

Lmax

M′ =
Locular

*
mcur

Working from the opposite direction, given a known magnification M, the multiplier mcur can be
calculated as follows:

M′ mcur = *
Locular

Lmax

From this, the current Digital Multiplier Control value (Z′cur) can be calculated as follows:

(mmax - 1)

(Z′max - Z′min)(mcur - 1)
Z′cur =

+ Z′min*

For simplicity, Z′min can be constrained to be zero (0). The camera designer will choose the
values and ranges of the remaining variables according to the capabilities of the device.

As an example, substituting some plausible values for each of these variables:

mmax = 40
Z′min = 0
Z′max = 255

The current multiplier (mcur) can be calculated as follows:

Revision 1.1 June 1, 2005 19

USB Device Class Definition for Video Devices

255

39 *
mcur =

Z′cur
+ 1

The current Digital Zoom control value (Z′cur) can be calculated as follows:

39

255 (mcur – 1) *
Z′cur =

In addition to the Digital Multiplier Control, devices may optionally support a Digital Multiplier
Limit control, allowing either the camera or the host to establish a temporary upper limit for the
Z′cur value. This control may be read-only if the limit can only be established via physical camera
configuration. If this control is used to decrease the limit below the current Z′cur value, the Z′cur
value will be adjusted to match the new limit.

2.4.2.5.3 Relationship between Optical and Digital Zoom
As mentioned in the preceding sections, users expect to use a single control on the device (or
from within an application on the host) to traverse the entire range of optical and digital zoom.
Further, users expect that digital zoom will not be active except at full optical zoom.

The following diagram illustrates the relationship between optical and digital zoom, and the
constraints on the zoom control variables:

Z′cur == Z′min

Z′min <= Z′cur <= Z′max

Digital Range

Optical Range

Zmin Zmax

Z′min Z′max

Zmin <= Zcur <= Zmax

Zcur == Zmax

Increasing Magnification

Figure 2-6 Relationship between Optical and Digital Zoom

Revision 1.1 June 1, 2005 20

USB Device Class Definition for Video Devices

2.4.2.5.4 Absolute vs. Relative Zoom
The equations and examples given in the previous sections describe independent, absolute
optical and digital zoom controls. However, based on users’ expectations that devices provide a
single relative zoom control allowing them to move across the entire zoom range (from wide to
telephoto and back again), many cameras will implement a relative zoom control that supports
increasing and decreasing the zoom parameters without actually specifying the parameter values.
Devices that allow only relative zoom control should still report the optical focal lengths and
maximum digital multiplier in their respective descriptors, as well as maintain read-only absolute
optical and digital zoom controls. This way, the host software will always be able to determine
the current state of the zoom values.

2.4.3 VideoStreaming Interface
VideoStreaming interfaces are used to interchange digital data streams between the Host and the
video function. They are optional. A video function can have zero or more VideoStreaming
interfaces associated with it, each possibly carrying data of a different nature and format. Each
VideoStreaming interface can have one isochronous or bulk data endpoint for video, and an
optional dedicated bulk endpoint for still images related to the video (only for method 3 of still
image transfer. See section 2.4.2.4 "Still Image Capture"). This construction guarantees a one-to-
one relationship between the VideoStreaming interface and the single data stream related to the
endpoint.

A VideoStreaming interface with isochronous endpoints must have alternate settings that can be
used to change certain characteristics of the interface and underlying endpoint(s). A typical use
of alternate settings is to provide a way to change the bandwidth requirements an active
isochronous pipe imposes on the USB. All devices that transfer isochronous video data must
incorporate a zero-bandwidth alternate setting for each VideoStreaming interface that has an
isochronous video endpoint, and it must be the default alternate setting (alternate setting zero). A
device offers to the Host software the option to temporarily relinquish USB bandwidth by
switching to this alternate setting. The zero-bandwidth alternate setting does not contain a
VideoStreaming isochronous data endpoint descriptor.

A VideoStreaming interface containing a bulk endpoint for streaming shall support only alternate
setting zero. Additional alternate settings containing bulk endpoints are not permitted in a device
that is compliant with the Video Class specification. This restriction does not prohibit the mix of
bulk and isochronous endpoints when the bulk endpoints are used solely for Still Image Transfer
Method 3. In that case, each alternate setting will include the descriptors for both an isochronous
endpoint and a bulk endpoint.

If a VideoStreaming interface with an isochronous endpoint supports a set of video parameter
combinations (including video format, frame size and frame rate) that utilize significantly
varying amounts of bandwidth across all combinations, it is recommended that the
VideoStreaming interface support a range (greater than two) of alternate interface settings with
varying maximum packet sizes. By doing so, the host would be able to select an appropriate

Revision 1.1 June 1, 2005 21

USB Device Class Definition for Video Devices

alternate setting for the given video parameter combination that makes most efficient use of bus
bandwidth.

For device implementers, the process of determining the number of alternate settings to be
provided and the maximum packet size for the video data endpoint in each alternate setting is
implementation dependent, and would depend on the bandwidth usage across the range of video
parameter combinations that the VideoStreaming interface is capable of supporting.

2.4.3.1 Stream Bandwidth Selection
The bandwidth required by a video stream can be satisfied by a USB bandwidth that is equal to
or greater than the function stream bandwidth. This can be illustrated as follows.

Function Bandwidth
USB Bandwidth

Stream

Figure 2-7 Stream Bandwidth Selection

The optimal allocation of the USB bandwidth to match the function’s bandwidth requirement is
achieved via negotiation between the host and the device.

See section 4.3.1.1, "Video Probe and Commit Control" for a complete description of the
negotiation process.

The negotiation process allows the host to provide preferred stream parameters to the device,
while the device selects the best combination of streaming parameters and reports the maximum
bandwidth usage for those settings. The host will use the bandwidth information to identify the
optimal alternate interface. The device is responsible for choosing the live streaming parameters
once the bandwidth is allocated. These parameters may be different than originally agreed upon
during the negotiation process. However, during the negotiation process, the host provided hints
to the device indicating the preferred way to choose the live stream parameters.

Once bandwidth has been allocated and streaming started, further parameter negotiation between
the host and the device can be performed without disturbing the current stream. Streaming
parameters are set as a group so that the function will have all information available while it
attempts to determine a working set.

Revision 1.1 June 1, 2005 22

USB Device Class Definition for Video Devices

Still image Method 2 uses a similar mechanism (see section 2.4.2.4, “Still Image Capture”).

2.4.3.2 Video and Still Image Samples
A video (or still image) sample refers to an encoded block of video data that the format-specific
decoder is able to accept and interpret in a single transmission. A single video sample may or
may not correspond to a single decoded video frame, depending on the video format in use. For
example, a YUV video stream (which has no inter-frame compression) would have a one to one
correspondence between a video sample and video frame. However, a MPEG-2 TS data stream
will require many video samples (or TS packets) to form a decoded video frame.

A single video sample may require multiple class-defined Payload Transfers. Conversely, there
may be one or more video samples within a single Payload Transfer. In the latter case, there must
be an integral number of fixed size samples within each Payload Transfer.

The VideoStreaming endpoint(s) encapsulate data with the class-defined Payload Header. This
encapsulation is identical for Payload Transfers on both isochronous and bulk endpoint types,
and applies to both the streaming and still image endpoints.

The following block diagram details the protocol layering and abstraction used in Payload
Transfers.

Bulk Transfers Isochronous
Transfers

Video Sample Handler

USBD

Video Codec

(1) USB Transfers

(2) Payload Transfers

(3) Sample Transfers

Figure 2-8 Protocol Layering and Abstraction

Revision 1.1 June 1, 2005 23

USB Device Class Definition for Video Devices

1. I/O Request Packet (IRP) requests from the client to the USB system software result in USB
transfers.

2. In response to IRP completion, the host software forwards the data in the form of payload
transfers. The bulk and isochronous handlers hide the transfer type differences from the
upper layers of the protocol stack.

3. The video sample handler accumulates the individual payload transfers to form a sample
transfer.

A Payload Transfer is composed of the class-defined payload header (see section 2.4.3.3 "Video
and Still Image Payload Headers") followed by the format-specific payload data.

Payload header Payload data

Figure 2-9 A Payload Transfer

Revision 1.1 June 1, 2005 24

USB Device Class Definition for Video Devices

2.4.3.2.1 Sample Bulk Transfers
The following examples show the relationship between Video Samples, Payload Transfers and
the token and data packets when exchanging bulk transfers with a device. Handshake packets are
not shown for the sake of clarity.

IN

Payload
Header Payload

Data

DATA0 DATA1IN IN

Video
Sample

DATA0/1…

IN

Payload
Header Payload

Data

DATA0 DATA1IN IN DATA0/1…

IN

Payload
Header Payload

Data

DATA0 DATA1IN

.

.

.

Figure 2-10 Sample Bulk Read (Multiple Transfers per Sample)

Revision 1.1 June 1, 2005 25

USB Device Class Definition for Video Devices

IN

Payload
Header Payload

Data

DATA0 DATA1IN IN

Video
Sample

DATA0/1…

Figure 2-11 Sample Bulk Read (Single Transfer per Sample)

Payload
Header Payload

Data

DATA0 DATA1

Video
Sample

DATA0/1… OUT OUT OUT

Figure 2-12 Sample Bulk Write (Single Transfer per Sample)

Revision 1.1 June 1, 2005 26

USB Device Class Definition for Video Devices

2.4.3.2.2 Sample Isochronous Transfers
The following examples show the relationship between Video Samples, Payload Transfers and
the token and data packets when exchanging isochronous transfers with a device. The actual
video sample size and bandwidth usage (i.e. number of data transactions and amount of data in
the last transaction of each payload) will vary according to the requirements of the device and
payload.

Figure 2-13 gives an example of a High Speed/High Bandwidth transfer over an IN endpoint.

Rev
SOF Packet

IN

Payload
Header Payload

Data

DATA2 DATA1 DATA0 IN IN

IN

Payload
Header Payload

Data

DATA2 DATA1 DATA0

SOF Packet

IN IN

IN

Payload
Header

Payload
Data

DATA2 DATA1 IN

Video
Sample

.

.

DATA0 IN

SOF Packet

Figure 2-13 Sample Isochronous Transfer, IN endpoint

ision 1.1 June 1, 2005 27

USB Device Class Definition for Video Devices

Figure 2-14 gives an example of a High Speed/High Bandwidth transfer over an OUT endpoint.

OUT

Payload
Header

Payload
Data

MDATA MDATA DATA2

SOF Packet

Payload
Header

Payload
Data

MDATA MDATA DATA2

SOF Packet

Payload
Header

Payload
Data

MDATA DATA1

SOF Packet

Video
Sample

OUT OUT

OUT OUT OUT

OUT OUT

.

.

.

Figure 2-14 Sample Isochronous Transfer, OUT endpoint

Revision 1.1 June 1, 2005 28

USB Device Class Definition for Video Devices

Figure 2-15 gives an example of a Full or High Speed transfer over an IN endpoint.

IN

Payload
Header Payload

Data

DATA0

SOF Packet

IN

Payload
Header Payload

Data

DATA0

SOF Packet

IN

Payload
Header

Payload
Data

DATA0

SOF Packet

Video
Sample

.

.

.

Figure 2-15 Sample Isochronous Transfer, IN endpoint

Revision 1.1 June 1, 2005 29

USB Device Class Definition for Video Devices

Figure 2-16 gives an example of a Full or High Speed transfer over an OUT endpoint.

OUT

Payload
Header Payload

Data

DATA0

SOF Packet

Payload
Header Payload

Data

SOF Packet

Payload
Header

Payload
Data

DATA0

SOF Packet

Video
Sample

OUT

OUT

.

.

.

DATA0

Figure 2-16 Sample Isochronous Transfer, OUT endpoint

Revision 1.1 June 1, 2005 30

USB Device Class Definition for Video Devices

2.4.3.3 Video and Still Image Payload Headers
Every Payload Transfer containing video or still-image sample data must start with a Payload
Header.

The format of the payload header is defined as follows.

Table 2-5 Format of the Payload Header
Offset Field Size Value Description
0 bHeaderLength 1 Number Length of the payload header in bytes

including this field.
1 bmHeaderInfo 1 Bitmap Provides information on the sample data

following the header, as well as the
availability of optional header fields in this
header.
D0: Frame ID – For frame-based formats,
this bit toggles between 0 and 1 every time a
new video frame begins. For stream-based
formats, this bit toggles between 0 and 1 at
the start of each new codec-specific segment.
This behavior is required for frame-based
payload formats (e.g., DV) and is optional
for stream-based payload formats (e.g.,
MPEG-2 TS). For stream-based formats,
support for this bit must be indicated via the
bmFramingInfo field of the Video Probe
and Commit controls (see section 4.3.1.1,
“Video Probe and Commit Controls”).

D1: End of Frame – This bit is set if the
following payload data marks the end of the
current video or still image frame (for frame-
based formats), or to indicate the end of a
codec-specific segment (for stream-based
formats). This behavior is optional for all
payload formats. For stream-based formats,
support for this bit must be indicated via the
bmFramingInfo field of the Video Probe
and Commit Controls (see section 4.3.1.1,
“Video Probe and Commit Controls”).

D2: Presentation Time – This bit is set if the
dwPresentationTime field is being sent as
part of the header.

Revision 1.1 June 1, 2005 31

USB Device Class Definition for Video Devices

D3: Source Clock Reference – This bit is set
if the dwSourceClock field is being sent as
part of the header.

D4: Reserved

D5: Still Image – This bit is set if the
following data is part of a still image frame,
and is only used for methods 2 and 3 of still
image capture.

D6: Error – This bit is set if there was an
error in the video or still image transmission
for this payload. The Stream Error Code
control would reflect the cause of the error.

D7: End of header – This bit is set if this is
the last header group in the packet, where the
header group refers to this field and any
optional fields identified by the bits in this
field (Defined for future extension).

The following fields may or may not be included in the header, depending on the bits that were
specified in the bmHeaderInfo field above.

These fields are in the order in which they are specified in the bitmap header field above, in the
order of least significant bit first. Because the header itself might be extended in the future, the
offset of dwPresentationTime is also variable. The device will indicate if it supports these fields
in the Payload Format Descriptor within the class-specific VideoStreaming descriptor. See
section 3.9.2.3 "Payload Format Descriptors".

Table 2-6 Extended Fields of the Payload Header
Offset Field Size Value Description

Variable dwPresentationTime 4 Number Presentation Time Stamp (PTS).
The source clock time in native device
clock units when the raw frame capture
begins. This field may be repeated for
multiple payload transfers comprising a
single video frame, with the restriction
that the value shall remain the same
throughout that video frame. The PTS is
in the same units as specified in the
dwClockFrequency field of the Video
Probe Control response.

Revision 1.1 June 1, 2005 32

USB Device Class Definition for Video Devices

Variable scrSourceClock 6 Number A two-part Source Clock Reference
(SCR) value

D31..D0: Source Time Clock in native
device clock units
D42..D32: 1KHz SOF token counter
D47..D43: Reserved, set to zero.

The least-significant 32 bits (D31..D0)
contain clock values sampled from the
System Time Clock (STC) at the source.
The clock resolution shall be according to
the dwClockFrequency field of the Probe
and Commit response of the device as
defined in Table 4-47 of this specification.
This value shall comply with the
associated stream payload specification.

The times at which the STC is sampled
must be correlated with the USB Bus
Clock. To that end, the next most-
significant 11 bits of the SCR (D42..D32)
contain a 1 KHz SOF counter,
representing the frame number at the time
the STC was sampled. The STC is
sampled at arbitrary SOF boundaries. The
SOF counter is the same size and
frequency as the frame number associated
with USB SOF tokens; however it is not
required to match the current frame
number. This allows implementations
using a chipset that can trigger on SOF
tokens (but not accurately obtain the
Frame number) to keep their own frame
counters.

The most-significant 5 bits (D47..D43) are
reserved, and must be set to zero.

The maximum interval between Payload
Headers containing SCR values is 100ms,
or the video frame interval, whichever is
greater. Shorter intervals are permitted.

Revision 1.1 June 1, 2005 33

USB Device Class Definition for Video Devices

The periodic transmission of the dwPresentationTime and dwSourceClock fields is mandatory
if all of the following conditions are true.

• The device has multiple video and/or audio source functions and is sending audio and
video streams to the host.

• The video and/or audio streams are interrelated and therefore need to be kept
synchronized.

• The stream format in use does not already contain timestamp and clock reference
information (MPEG-2 TS is an example of a format that contains this information).

• The sample is part of a video frame (and not a still image frame).

These time information fields allow the host software to reconstruct the source clock to support
high-quality synchronization between separate data pipes (audio, video, etc.) and rate matching
between the data source and sink, as discussed in the following section.

2.4.3.4 Stream Synchronization and Rate Matching
To properly synchronize multiple audio and video streams from a media source, the media
source must provide (to the media sink) its local stream latency, periodic clock reference
information, and a way for the media sink to determine the proper presentation time for samples
from each stream (relative to the other streams).

2.4.3.4.1 Latency
The media source is required to report its internal latency (delay from data acquisition to data
delivery on the bus). This latency reflects the lag introduced by any buffering, compression,
decompression, or processing done by the stream source. Without latency information for each
stream, a media sink (or rendering device) cannot properly correlate the presentation times of
each stream.

In the case of a video source, this means that the source must guarantee that the portion of a
sample fully acquired as of SOFn (Start Of Frame n) will have been completely sent to the bus as
of SOFn+δ. Latency δ is the source’s internal delay expressed in number of USB frames
(milliseconds). For high-speed endpoints, the resolution increases to 125 microseconds, but the
delay will continue to be expressed in number of USB frames. Every VideoStreaming interface
must report this latency value. See the description of the wDelay parameter in section 4.3.1.1,
"Video Probe and Commit Controls". By following these rules, phase jitter is limited to ±1
millisecond. It is up to the video sink to synchronize streams by scheduling the rendering of
samples at the correct moment, taking into account the internal delays of all media streams being
rendered.

Revision 1.1 June 1, 2005 34

USB Device Class Definition for Video Devices

2.4.3.4.2 Clock Reference
Clock reference information is used by a media sink to perform clock rate matching. Rate
matching refers to the synchronization of the media sink’s rendering clock with the media
source’s sampling clock. Without clock rate matching, a stream will encounter buffer overrun or
underrun errors. This has not been a problem with audio streams due to the relative ease of
performing audio sample rate conversion. However, sample rate conversion is significantly more
difficult with video, so a method for rate matching is required.

To understand the problem of clocks running at slightly different rates, consider the following
example. For simplicity, assume that video buffers can be filled instantaneously, and that there is
one buffer available to be filled at any given time within the video frame interval. Also assume
that the two crystals governing the source and rendering clocks operate with 100ppm (parts per
million) accuracy. The accuracy value is a ratio that can be applied such that for every frame, the
clock will drift by a fraction of the frame that is equal to the ratio. In other words, two clocks
with accuracy of 100ppm could have a worst case drift relative to each other of 1/5,000th of a
frame (two clocks at opposite extremes of their valid operating range for a cumulative error ratio
of 2 * 100/1,000,000). Therefore, a frame glitch will occur once every 5,000 frames. At a frame
rate of 30 fps, this would equate to a glitch every 166.67 seconds. At a frame rate of 60 fps, it’s
worse, with one glitch every 83.3 seconds.

Frame glitches can be postponed, but not avoided, by adding additional buffers to hold video
frames before they are rendered. If the source clock is running slower than the rendering clock,
the buffer underrun could only be postponed by letting the extra buffers fill to a certain threshold
before rendering, resulting in unacceptable latency. Once the first glitch occurs, the extra buffers
are effectively useless, since the behavior will degrade to the single-buffer case from that point
onward.

This specification assumes that in all cases, the media sink has no control over the media source
clock, and that the source and sink do not "slave" to a common clock (the bus clock lacking
sufficient resolution). Also, due to cost constraints, additional isochronous endpoints to
communicate clock rate information will not be used. Therefore, this specification requires that a
video stream include clock reference information that can be used to adjust the rendering clock
rate. The clock reference information may be encapsulated in a transport stream, or it may be
provided via an optional field in each payload header. This field becomes required in the latter
case.

2.4.3.4.3 Presentation Time
For fixed rate streams, the presentation time can be derived from the data stream. For a fixed-rate
audio stream (e.g., PCM), the media sink can derive the presentation time from the stream offset
(typically the count of bytes since start of capture). For variable rate streams, each sample must

Revision 1.1 June 1, 2005 35

USB Device Class Definition for Video Devices

be accompanied by a presentation timestamp. The media sink is responsible for converting the
timestamp to native units and adjusting the timestamp to account for the local clock offset when
a stream starts, as well as accounting for source stream latency. Even though video streams
might arrive at the media sink at a fixed frame rate, if they are subject to variable rate
compression and encoding, they are not considered fixed-rate streams and will require
timestamps on the samples.

2.4.3.5 Dynamic Frame Interval Support
In order to adjust to different environmental conditions, such as varying lighting conditions, it
may be necessary for a video device (such as a camera) to dynamically change the frame interval
and sensor exposure time to maintain acceptable image quality while streaming.

After bus bandwidth for the video data pipe of the corresponding VideoStreaming interface has
been allocated and streaming has commenced, the data source may dynamically vary the frame
interval (and the corresponding frame rate), as long as the new frame interval does not require
greater bus bandwidth than what was originally allocated. The data sink would determine the
new frame interval based on the Presentation Time Stamp (PTS) information included in the
video payload headers.

2.4.3.6 Dynamic Format Change Support
Certain devices, such as those that contain a tape media transport, are capable of dynamically
changing the video format being streamed to the host while streaming is occurring. Since the
new video format may have different bus bandwidth requirements from the old format, the host
must be notified of the format change and be allowed to perform the reconfiguration and bus
bandwidth reallocation necessary to support the new video format.

The device indicates its support for dynamic format change events through the bmInfo field of
the VideoStreaming Input Header. See section 3.9.2.1 "Input Header Descriptor".

When a dynamic format change event occurs, the following steps take place:

• Device detects dynamic format change (while streaming is occurring).
• Device begins sending empty data payloads to the host with the Error bit set in the video

stream payload header.
• Device sets the Stream Error Code Control to "Format Change" (see section 4.3.1.7

"Stream Error Code Control").
• The host queries the new stream state through a VS_PROBE_CONTROL request with

the GET_CUR attribute (see 4.3.1.1, “Video Probe and Commit Controls”).
• If the new format is acceptable by the host, it issues a VS_COMMIT_CONTROL request

with the SET_CUR attribute and, if necessary, reallocates the USB bandwidth through an
alternate interface selection standard request. If the new format is not acceptable, the host
will negotiate a new format with the stream PROBE/COMMIT controls.

Revision 1.1 June 1, 2005 36

USB Device Class Definition for Video Devices

2.4.3.7 Data Format Classes
For the purposes of host processing of incoming and outgoing data packets, the various video
formats supported by the USB Video Class (UVC) can be divided into two broad categories:

• Frame-based video formats – These video formats require the frame/sample boundary
information to be transmitted out-of-band. Examples of such formats are uncompressed
video (formatted in various YUV variants), MJPEG, and DV. For these formats, the FID
(and optionally EOF) bits in the UVC payload headers must be supported.

• Stream-based video formats – These video formats have the frame/sample boundary
information transmitted in-band. Examples of such formats are MPEG-2 TS, MPEG-2 PS
and MPEG-1 system streams. For these formats, the FID and EOF bits are optional. If
used, the bits allow the sender to identify codec-specific segment boundaries within the
stream. The receiver would typically use this information to provide data to a decoder
with lower latency than would be possible if buffer fullness alone was used to trigger
buffer completion (see section 4.3.1.1, “Video Probe and Commit Controls”).

The following is determined by the format class under which the video format is classified:

• The default Incoming/Outgoing data processing algorithm
• Bit fields supported by default in UVC payload header (BFH[0])

The following is determined by the specific video payload format:

• Format descriptor type
• Frame descriptor type, if needed
• Support for time information fields in UVC payload header

2.4.4 Control Transfer and Request Processing
The Video Class specification’s control transfer (or Request) mechanism builds upon sections
5.5, “Control Transfers”; 8.5.3 ,“Control Transfers; 9.2.6, “Request Processing”; and 9.3, “USB
Device Requests” of the Universal Serial Bus Specification, Revision 2.0 (the USB 2.0 spec).
Those sections describe the timing and error handling of control transfers, but do not prescribe a
method for control transfer completion using interrupt pipes. The following paragraphs describe
Control Transfer operations in the context of the Video Class, including the use of the Status
Interrupt pipe to provide notification of state changes within the device.

Control transfers minimally have two transaction stages: Setup and Status. A control transfer
may optionally contain a Data stage between the Setup and Status stages. The Setup stage
contains all information necessary to address a particular entity, specify the desired operation,
and prepare for an optional Data stage. A Data stage can be host-to-device (OUT transactions),
or device-to-host (IN transactions), depending on the direction and operation specified in the
Setup stage via the bmRequestType and bRequest fields.

Revision 1.1 June 1, 2005 37

USB Device Class Definition for Video Devices

In the context of the Video Class specification, SET_CUR requests will always involve a Data
stage from host to device, and GET_* requests will always involve a Data stage from device to
host. Although none are defined currently, an exception to this rule would be a SET_CUR
request where the bRequest field contains all information necessary to place the device into a
known state. However, “toggle” requests without a Data stage are explicitly disallowed.

The device shall use protocol stall (not function stall) during the Data or Status stages if the
device is unable to complete the Control transfer (see section 8.5.3.4 of the USB Specification
Revision 2.0). Reasons for protocol stall include unsupported operations, invalid target entity,
unexpected Data length, or invalid Data content. The device shall update the value of Request
Error Code Control, and the host may use that control to determine the reason for the protocol
stall (see section 4.2.1.2 "Request Error Code Control"). The device must not NAK or STALL
the SETUP transaction.

Typically, the host will serialize Control Transfers, meaning that the next Setup stage will not
begin until the previous Status stage has completed. However, in situations where the bus has
experienced errors, a Setup transaction may be sent before the completion of a previous control
transfer. The device must abandon the previous control transfer.

Due to this command serialization, it is important that the duration of control transfers (from
Setup stage through Status stage) be kept as short as possible. For this reason, as well as the
desire to avoid polling for device status, this specification defines an interrupt status mechanism
to convey status changes independently of the control transfers that caused the state change. This
mechanism is described in section 2.4.2.2, "Status Interrupt Endpoint". Any control that requires
more than 10ms to respond to a SET_CUR request (asynchronous control), or that can change
independently of any external SET_CUR request (Autoupdate control), must send a Control
Change status interrupt. These characteristics will be reflected in the GET_INFO response for
that control (see 4.1.2, “Get Request”).

If a SET_CUR request is issued to an Asynchronous Control with unsupported operations,
invalid target entity, unexpected data Length or invalid data content, the device shall use
protocol stall since the device is unable to complete the Control Transfer (see section 8.5.3.4 of
the USB Specification Revision 2.0). The device shall update the value of the Request Error Code
Control (see section 4.2.1.2 "Request Error Code Control").

In the case of a SET_CUR request with valid parameters to an Asynchronous Control, the
Control Transfer operation shall enter the Status stage immediately after receiving the data
transferred during the Data stage. Once the Status stage has successfully completed, the device
shall eventually send a Control Change Interrupt that will reflect the outcome of the request:

• If the request succeeded, the Control Change Interrupt will advertise the new value (see
section 2.4.2.2 “Status Interrupt Endpoint”).

• If the request could not be executed, the device shall send a Control Change Interrupt
using the Control Failure Change mechanism to describe the reason for the failure (see

Revision 1.1 June 1, 2005 38

USB Device Class Definition for Video Devices

Table 2-1 in section 2.4.2.2 “Status Interrupt Endpoint” and Figure 2-21 in section 2.4.4
“Control Transfer and Request Processing”).

The amount of time between the end of a successful Status stage and the Control Change
interrupt is implementation specific. For instance, a tape transport might take 3-5 seconds to
completely change state, so the Control Change interrupt would be sent within 3-5 seconds.

The following flow diagrams show the Setup, Data and Status stages of SET_CUR Control
Transfers for controls supporting one of the two legal bit combinations with the D1 (SET) bit
enabled. These are described because they show the relationship between a SET_CUR request
and the resulting state change.

Revision 1.1 June 1, 2005 39

USB Device Class Definition for Video Devices

SET/GET Supported

Data Stage

Setup Stage

DeviceHost

State
Change

Status Stage

SET_CUR
<=10ms

Figure 2-17 Control Transfer Example (Case 1)

Revision 1.1 June 1, 2005 40

USB Device Class Definition for Video Devices

SET/GET/Interrupt Supported

SET_CUR

>10ms

Control Change interrupt

Status Stage

Data Stage

Setup Stage

DeviceHost

State
Change

<=10ms

Figure 2-18 Control Transfer Example (Case 2)

Revision 1.1 June 1, 2005 41

USB Device Class Definition for Video Devices

SET/GET/Interrupt Supported (with error scenarios)

Data Stage STALL

Status Stage

Data Stage

Setup Stage

Status Stage

Data Stage

Setup Stage

Control Change interrupt

Status Stage

Data Stage

Setup Stage

SET_CUR

DeviceHost

State
Change

GET_CUR
(other

control)

GET_CUR
(same

control)

Data Stage STALL

Setup Stage
GET_CUR

(same
control)

Setup Stage
SET_CUR

(same
control)

>10ms

<=10ms

Figure 2-19 Control Transfer Example (Case 3)

Revision 1.1 June 1, 2005 42

USB Device Class Definition for Video Devices

SET/GET/Interrupt Supported (Device busy before first SET request)

Setup Stage

Data Stage STALL

Setup Stage

Data Stage STALL

Control Change interrupt

Status Stage

Data Stage

Setup Stage

SET_CUR

DeviceHost

State
Change

SET_CUR

>10ms

Device
Busy

SET_CUR

<=10ms

Figure 2-20 Control Transfer Example (Case 4)

Revision 1.1 June 1, 2005 43

USB Device Class Definition for Video Devices

SET/GET/Interrupt Supported/State Change Failure

SET_CUR

>10ms

Control Change interrupt

Status Stage

Data Stage

Setup Stage

DeviceHost

State
Change

<=10ms

Figure 2-21 Control Transfer Example (Case 5)

Revision 1.1 June 1, 2005 44

USB Device Class Definition for Video Devices

3 Descriptors
Descriptors are used by USB devices to report their attributes. A descriptor is a data structure
with a defined format. For information, see section 9.5 Descriptors of USB Specification
Revision 2.0.
The following sections describe the standard and class-specific USB descriptors for the Video
Interface Class.

Revision 1.1 June 1, 2005 45

USB Device Class Definition for Video Devices

3.1 Descriptor Layout Overview
The following diagram illustrates the descriptor layout for an entire device. The example used in
this case is for a desktop video camera device with a single isochronous video pipe and a
dedicated bulk still image pipe.

Figure 3-1 Video Camera Descriptor Layout Example

3.2 Device Descriptor
Because video functionality is always considered to reside at the interface level, this class
specification does not define a specific video device descriptor.

For devices that contain a video function that only exposes a VideoControl Interface, the device
descriptor must indicate that class information is to be found at the interface level. Therefore, the
bDeviceClass field of the device descriptor must contain zero so that enumeration software

Revision 1.1 June 1, 2005 46

USB Device Class Definition for Video Devices

looks down at the interface level to determine the Interface Class. The bDeviceSubClass and
bDeviceProtocol fields must be set to zero.

Devices that expose one or more Video Interface Collections also indicate that class information
is to be found at the interface level. However, since the device uses an Interface Association
Descriptor in order to describe the Video Interface Collection, it must set the bDeviceClass,
bDeviceSubClass and bDeviceProtocol fields 0xEF, 0x02 and 0x01 respectively. This set of
class codes is defined as the Multi-interface Function Class codes.

All other fields of the device descriptor must comply with the definitions in section 9.6.1
"Device" of USB Specification Revision 2.0. There is no class-specific device descriptor.

3.3 Device_Qualifier Descriptor
The Device_Qualifier descriptor is required for all USB 2.0 high-speed capable devices. The
rules that apply for setting the bDeviceClass, bDeviceSubClass and bDeviceProtocol fields in
the Device Descriptor apply for this descriptor as well. All other fields of the device qualifier
descriptor must comply with the definitions in section 9.6.2 "Device Qualifier" of USB
Specification Revision 2.0.

3.4 Configuration Descriptor
The configuration descriptor for a device containing a video function is identical to the standard
Configuration descriptor defined in section 9.6.3 "Configuration" of USB Specification Revision
2.0. There is no class-specific configuration descriptor.

3.5 Other_Speed_Configuration Descriptor
The Other_Speed_Configuration descriptor is required for USB 2.0 devices that are capable of
operating at both full-speed and high-speed modes. It is identical to the standard
Other_Speed_Configuration descriptor defined in section 9.6.4 "Other_Speed_Configuration" of
USB Specification Revision 2.0.

3.6 Interface Association Descriptor
A device must use an Interface Association Descriptor to describe a Video Interface Collection
for each device function that requires a VideoControl Interface and one or more VideoStreaming
interfaces. The standard VIC Interface Association Descriptor is identical to the standard
Interface Association Descriptor defined in the Interface Association Descriptor ECN, except
that some fields now have dedicated values.

If the VideoControl interface is part of a Video Interface Collection, the iFunction field in the
IAD and the iInterface field in the Standard VC interface descriptor for this Video Interface
Collection must be equal.

Revision 1.1 June 1, 2005 47

USB Device Class Definition for Video Devices

Table 3-1 Standard Video Interface Collection IAD
Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes: 8
1 bDescriptorType 1 Constant INTERFACE ASSOCIATION Descriptor.
2 bFirstInterface 1 Number Interface number of the first VideoControl

interface that is associated with this function.
3 bInterfaceCount 1 Number Number of contiguous VideoStreaming interfaces

that are associated with this function. The count
includes the first VideoControl interface and all
its associated VideoStreaming interfaces.

4 bFunctionClass 1 Class CC_VIDEO. Video Interface Class code
(assigned by the USB). See section A.1, "Video
Interface Class Code".

5 bFunctionSubClass 1 SubClass SC_VIDEO_INTERFACE_COLLECTION.
Video Interface Subclass code. Assigned by this
specification. See section A.2, "Video Interface
Subclass Codes".

6 bFunctionProtocol 1 Protocol Not used. Must be set to
PC_PROTOCOL_UNDEFINED.

7 iFunction 1 Index Index of a string descriptor that describes this
interface. This must be used for the device
(function) name and be implemented in US
English (LANGID = 0x0409) at the minimum.

3.7 VideoControl Interface Descriptors
The VideoControl (VC) interface descriptors contain all relevant information to fully
characterize the corresponding video function. The standard interface descriptor characterizes the
interface itself, whereas the class-specific interface descriptor provides pertinent information
concerning the internals of the video function. It specifies revision level information and lists the
capabilities of each Unit and Terminal.

3.7.1 Standard VC Interface Descriptor
The standard VC interface descriptor is identical to the standard interface descriptor defined in
section 9.6.5 "Interface" of USB Specification Revision 2.0, except that some fields have now
dedicated values.

Table 3-2 Standard VC Interface Descriptor
Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes: 9
1 bDescriptorType 1 Constant INTERFACE descriptor type
2 bInterfaceNumber 1 Number Number of interface. A zero-based value

Revision 1.1 June 1, 2005 48

USB Device Class Definition for Video Devices

identifying the index in the array of
concurrent interfaces supported by this
configuration.

3 bAlternateSetting 1 Number Value used to select an alternate setting for
the interface identified in the prior field.

4 bNumEndpoints 1 Number Number of endpoints used by this interface
(excluding endpoint 0). This number is 0 or
1 depending on whether the optional status
interrupt endpoint is present.

5 bInterfaceClass 1 Class CC_VIDEO. Video Interface Class code
(assigned by the USB). See section A.1,
"Video Interface Class Code".

6 bInterfaceSubClass 1 Subclass SC_VIDEOCONTROL. Video Interface
Subclass code. Assigned by this
specification. See section A.2, "Video
Interface Subclass Codes".

7 bInterfaceProtocol 1 Protocol Not used. Must be set to
PC_PROTOCOL_UNDEFINED.

8 iInterface 1 Index Index of a string descriptor that describes
this interface. This must be used for the
device (function) name and be
implemented in US English (LANGID =
0x0409) at the minimum.

3.7.2 Class-Specific VC Interface Descriptor
The class-specific VC interface descriptor is a concatenation of all the descriptors that are used
to fully describe the video function, i.e., all Unit Descriptors (UDs) and Terminal Descriptors
(TDs).

The total length of the class-specific VC interface descriptor depends on the number of Units and
Terminals in the video function. Therefore, the descriptor starts with a header that reflects the
total length in bytes of the entire class-specific VC interface descriptor in the wTotalLength
field. The bcdUVC field identifies the release of the Video Device Class Specification with
which this video function and its descriptors are compliant. The bInCollection field indicates
how many VideoStreaming interfaces there are in the Video Interface Collection to which this
VideoControl interface belongs. The baInterfaceNr() array contains the interface numbers of all
the VideoStreaming interfaces in the Collection. The bInCollection and baInterfaceNr() fields
together provide all necessary information to determine which interfaces together constitute the
entire USB interface to the video function, i.e., describe the Video Interface Collection.

The order in which the Unit and Terminal descriptors are reported is not important, because
every descriptor can be identified through its bDescriptorType and bDescriptorSubtype fields.

Revision 1.1 June 1, 2005 49

USB Device Class Definition for Video Devices

The bDescriptorType field identifies the descriptor as being a class-specific interface descriptor.
The bDescriptorSubtype field further qualifies the exact nature of the descriptor.

The following table defines the class-specific VC interface header descriptor.

Table 3-3 Class-specific VC Interface Header Descriptor
Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 12+n
1 bDescriptorType 1 Constant CS_INTERFACE descriptor type
2 bDescriptorSubType 1 Constant VC_HEADER descriptor subtype
3 bcdUVC 2 BCD Video Device Class Specification release

number in binary-coded decimal. (i.e. 2.10
is 210H)

5 wTotalLength 2 Number Total number of bytes returned for the
class-specific VideoControl interface
descriptor. Includes the combined length
of this descriptor header and all Unit and
Terminal descriptors.

7 dwClockFrequency 4 Number Use of this field has been deprecated.

The device clock frequency in Hz. This
will specify the units used for the time
information fields in the Video Payload
Headers of the primary data stream and
format.

The dwClockFrequency field of the
Video Probe and Commit control replaces
this descriptor field. A value for this field
shall be chosen such that the primary or
default function of the device will be
available to host software that implements
Version 1.0 of this specification.

11 bInCollection 1 Number The number of VideoStreaming interfaces
in the Video Interface Collection to which
this VideoControl interface belongs: n

12 baInterfaceNr(1) 1 Number Interface number of the first
VideoStreaming interface in the Collection

… … … … …
12+(n-
1)

baInterfaceNr(n) 1 Number Interface number of the last
VideoStreaming interface in the Collection

This header is followed by one or more Unit and/or Terminal Descriptors. The layout of the
descriptors depends on the type of Unit or Terminal they represent. There is a descriptor type for

Revision 1.1 June 1, 2005 50

USB Device Class Definition for Video Devices

each Unit and Terminal described in section 2.3, "Video Function Topology". They are
summarized in the following sections. The first four fields are common for all Unit and Terminal
Descriptors. They contain the Descriptor Length, Descriptor Type, Descriptor Subtype, and Unit
or Terminal ID.

Each Unit and Terminal within the video function is assigned a unique identification number, the
Unit ID (UID) or Terminal ID (TID), contained in the bUnitID or bTerminalID field of the
descriptor. The value 0x00 is reserved for undefined ID, effectively restricting the total number
of addressable entities in the video function (both Units and Terminals) to 255.

Besides uniquely identifying all addressable entities in a video function, the IDs also serve to
describe the topology of the video function; i.e., the bSourceID field of a Unit or Terminal
descriptor indicates to which other Unit or Terminal this Unit or Terminal is connected.

3.7.2.1 Input Terminal Descriptor
The Input Terminal descriptor (ITD) provides information to the Host that is related to the
functional aspects of the Input Terminal.

The Input Terminal is uniquely identified by the value in the bTerminalID field. No other Unit
or Terminal within the same video function may have the same ID. This value must be passed in
the bTerminalID field of each request that is directed to the Terminal.

The wTerminalType field provides pertinent information about the physical entity that the Input
Terminal represents. This could be a USB OUT endpoint, an external Composite Video In
connection, a camera sensor, etc. A complete list of Terminal Type codes is provided in section
B.2, "Input Terminal Types".

The bAssocTerminal field is used to associate an Output Terminal to this Input Terminal,
effectively implementing a bi-directional Terminal pair. An example of this would be a tape unit
on a camcorder, which would have Input and Output Terminals to sink and source video
respectively. If the bAssocTerminal field is used, both associated Terminals must belong to the
bi-directional Terminal Type group. If no association exists, the bAssocTerminal field must be
set to zero.

The Host software can treat the associated Terminals as being physically related. In many cases,
one Terminal can not exist without the other. An index to a string descriptor is provided to
further describe the Input Terminal.

The following table presents an outline of the Input Terminal descriptor.

Revision 1.1 June 1, 2005 51

USB Device Class Definition for Video Devices

Table 3-4 Input Terminal Descriptor
Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes: 8 (+ x)
1 bDescriptorType 1 Constant CS_INTERFACE descriptor type
2 bDescriptorSubtype 1 Constant VC_INPUT_TERMINAL descriptor subtype
3 bTerminalID 1 Constant A non-zero constant that uniquely identifies

the Terminal within the video function. This
value is used in all requests to address this
Terminal.

4 wTerminalType 2 Constant Constant that characterizes the type of
Terminal. See Appendix B, "Terminal Types".

6 bAssocTerminal 1 Constant ID of the Output Terminal to which this Input
Terminal is associated, or zero (0) if no such
association exists.

7 iTerminal 1 Index Index of a string descriptor, describing the
Input Terminal.

… … … … Depending on the Terminal type, certain Input
Terminal descriptors have additional fields.
The descriptors for these special Terminal
types are described in separate sections
specific to those Terminals, and in
accompanying documents.

3.7.2.2 Output Terminal Descriptor
The Output Terminal descriptor (OTD) provides information to the Host that is related to the
functional aspects of the Output Terminal.

The Output Terminal is uniquely identified by the value in the bTerminalID field. No other Unit
or Terminal within the same video function may have the same ID. This value must be passed in
the bTerminalID field of each request that is directed to the Terminal.

The wTerminalType field provides pertinent information about the physical entity the Output
Terminal represents. This could be a USB IN endpoint, an external Composite Video Out
connection, a LCD display, etc. A complete list of Terminal Type codes is provided in section
B.3, "Output Terminal Types".

The bAssocTerminal field is used to associate an Input Terminal to this Output Terminal,
effectively implementing a bi-directional Terminal pair. If the bAssocTerminal field is used,
both associated Terminals must belong to the bi-directional Terminal Type group. If no
association exists, the bAssocTerminal field must be set to zero.

Revision 1.1 June 1, 2005 52

USB Device Class Definition for Video Devices

The bSourceID field is used to describe the connectivity for this Terminal. It contains the ID of
the Unit or Terminal to which this Output Terminal is connected via its Input Pin.
An index to a string descriptor is provided to further describe the Output Terminal.

The following table presents an outline of the Output Terminal descriptor.

Table 3-5 Output Terminal Descriptor
Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes: 9 (+ x)
1 bDescriptorType 1 Constant CS_INTERFACE descriptor type
2 bDescriptorSubtype 1 Constant VC_OUTPUT_TERMINAL descriptor

subtype
3 bTerminalID 1 Constant A non-zero constant that uniquely identifies

the Terminal within the video function. This
value is used in all requests to address this
Terminal.

4 wTerminalType 2 Constant Constant that characterizes the type of
Terminal. See Appendix B, "Terminal
Types".

6 bAssocTerminal 1 Constant Constant, identifying the Input Terminal to
which this Output Terminal is associated, or
zero (0) if no such association exists.

7 bSourceID 1 Constant ID of the Unit or Terminal to which this
Terminal is connected.

8 iTerminal 1 Index Index of a string descriptor, describing the
Output Terminal.

… … … … Depending on the Terminal type, certain
Output Terminal descriptors have additional
fields. The descriptors for these special
Terminal types are described in
accompanying documents.

3.7.2.3 Camera Terminal Descriptor
The Camera Terminal is uniquely identified by the value in the bTerminalID field. No other
Unit or Terminal within the same video function may have the same ID. This value must be
passed in the bTerminalID field of each request that is directed to the Terminal.

The wTerminalType field provides pertinent information about the physical entity that the Input
Terminal represents. For the Camera Terminal, this field shall be set to ITT_CAMERA
 (see section B.2, “Input Terminal Types”).

Revision 1.1 June 1, 2005 53

USB Device Class Definition for Video Devices

The bAssocTerminal field is used to associate an Output Terminal to this Input Terminal,
effectively implementing a bi-directional Terminal pair. An index to a string descriptor is
provided to further describe the Camera Terminal.

The bmControls field is a bitmap, indicating the availability of certain camera controls for the
video stream. For future expandability, the number of bytes occupied by the bmControls field is
indicated in the bControlSize field. The bControlSize field is permitted to specify a value less
than the value needed to cover all the control bits (including zero), in which case the unspecified
bmControls bytes will not be present and the corresponding control bits are assumed to be zero.

The layout of the Camera Terminal descriptor is detailed in the following table.

Table 3-6 Camera Terminal Descriptor
Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 15
+ n

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type
2 bDescriptorSubtype 1 Constant VC_INPUT_TERMINAL

descriptor subtype
3 bTerminalID 1 Constant A non-zero constant that uniquely

identifies the Terminal within the
video function. This value is used
in all requests to address this
Terminal.

4 wTerminalType 2 Constant Constant that characterizes the type
of Terminal. This is set to the
ITT_CAMERA value.

6 bAssocTerminal 1 Constant ID of the Output Terminal to which
this Input Terminal is associated.

7 iTerminal 1 Index Index of a string descriptor that
describes the Camera Terminal.

8 wObjectiveFocalLengthMin 2 Number The value of Lmin (see section
2.4.2.5.1 "Optical Zoom"). If
Optical Zoom is not supported, this
field shall be set to 0.

10 wObjectiveFocalLengthMax 2 Number The value of Lmax (see section
2.4.2.5.1 "Optical Zoom"). If
Optical Zoom is not supported, this
field shall be set to 0.

12 wOcularFocalLength 2 Number The value of Locular (see section
2.4.2.5.1 "Optical Zoom"). If
Optical Zoom is not supported, this
field shall be set to 0.

Revision 1.1 June 1, 2005 54

USB Device Class Definition for Video Devices

14 bControlSize 1 Number Size in bytes of the bmControls
field: n

15 bmControls n Bitmap A bit set to 1 indicates that the
mentioned Control is supported for
the video stream.
D0: Scanning Mode
D1: Auto-Exposure Mode
D2: Auto-Exposure Priority
D3: Exposure Time (Absolute)
D4: Exposure Time (Relative)
D5: Focus (Absolute)
D6 : Focus (Relative)
D7: Iris (Absolute)
D8 : Iris (Relative)
D9: Zoom (Absolute)
D10: Zoom (Relative)
D11: PanTilt (Absolute)
D12: PanTilt (Relative)
D13: Roll (Absolute)
D14: Roll (Relative)
D15: Reserved
D16: Reserved
D17: Focus, Auto
D18: Privacy
D19..(n*8-1): Reserved, set to zero

3.7.2.4 Selector Unit Descriptor
The Selector Unit is uniquely identified by the value in the bUnitID field of the Selector Unit
descriptor (SUD). No other Unit or Terminal within the same video function may have the same
ID. This value must be passed with each request that is directed to the Selector Unit.

The bNrInPins field contains the number of Input Pins (p) of the Selector Unit. The connectivity
of the Input Pins is described via the baSourceID() array that contains p elements. The index i
into the array is one-based and directly related to the Input Pin numbers. baSourceID(i) contains
the ID of the Unit or Terminal to which Input Pin i is connected.

An index to a string descriptor is provided to further describe the Selector Unit.

The following table details the structure of the Selector Unit descriptor.

Table 3-7 Selector Unit Descriptor
Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 6+p

Revision 1.1 June 1, 2005 55

USB Device Class Definition for Video Devices

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type
2 bDescriptorSubtype 1 Constant VC_SELECTOR_UNIT descriptor subtype
3 bUnitID 1 Number A non-zero constant that uniquely identifies

the Unit within the video function. This
value is used in all requests to address this
Unit.

4 bNrInPins 1 Number Number of Input Pins of this Unit: p
5 baSourceID(1) 1 Number ID of the Unit or Terminal to which the first

Input Pin of this Selector Unit is connected.
… … … … …
5+(p-1) baSourceID(p) 1 Number ID of the Unit or Terminal to which the last

Input Pin of this Selector Unit is connected.
5+p iSelector 1 Index Index of a string descriptor, describing the

Selector Unit.

3.7.2.5 Processing Unit Descriptor
The Processing Unit is uniquely identified by the value in the bUnitID field of the Processing
Unit descriptor (PUD). No other Unit or Terminal within the same video function may have the
same ID. This value must be passed with each request that is directed to the Processing Unit.

The bSourceID field is used to describe the connectivity for this Processing Unit. It contains the
ID of the Unit or Terminal to which this Processing Unit is connected via its Input Pin. The
bmControls field is a bit-map, indicating the availability of certain processing Controls for the
video stream. For future expandability, the number of bytes occupied by the bmControls field is
indicated in the bControlSize field. The bControlSize field is permitted to specify a value less
than the value needed to cover all the control bits (including zero), in which case the unspecified
bmControls bytes will not be present and the corresponding control bits are assumed to be zero.

An index to a string descriptor is provided to further describe the Processing Unit.

The layout of the Processing Unit descriptor is detailed in the following table.

Table 3-8 Processing Unit Descriptor
Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes: 10+n
1 bDescriptorType 1 Constant CS_INTERFACE descriptor type
2 bDescriptorSubtype 1 Constant VC_PROCESSING_UNIT descriptor

subtype
3 bUnitID 1 Number A non-zero constant that uniquely identifies

the Unit within the video function. This value
is used in all requests to address this Unit.

4 bSourceID 1 Constant ID of the Unit or Terminal to which this Unit
is connected.

Revision 1.1 June 1, 2005 56

USB Device Class Definition for Video Devices

5 wMaxMultiplier 2 Number If the Digital Multiplier control is supported,
this field indicates the maximum digital
magnification, multiplied by 100. For
example, for a device that supports 1-4.5X
digital zoom (a multiplier of 4.5), this field
would be set to 450. If the Digital Multiplier
control is not supported, this field shall be set
to 0.

7 bControlSize 1 Number Size of the bmControls field, in bytes: n
8 bmControls n Bitmap A bit set to 1 indicates that the mentioned

Control is supported for the video stream.
D0: Brightness
D1: Contrast
D2: Hue
D3: Saturation
D4: Sharpness
D5: Gamma
D6: White Balance Temperature
D7: White Balance Component
D8: Backlight Compensation
D9: Gain
D10: Power Line Frequency
D11: Hue, Auto
D12: White Balance Temperature, Auto
D13: White Balance Component, Auto
D14: Digital Multiplier
D15: Digital Multiplier Limit
D16: Analog Video Standard
D17: Analog Video Lock Status
D18..(n*8-1): Reserved. Set to zero.

8+n iProcessing 1 Index Index of a string descriptor that describes this
processing unit.

9+n bmVideoStandards 1 Bitmap A bitmap of all analog video standards
supported by the Processing Unit.

A value of zero indicates that this bitmap
should be ignored.

D0: None
D1: NTSC – 525/60
D2: PAL – 625/50
D3: SECAM – 625/50
D4: NTSC – 625/50
D5: PAL – 525/60

Revision 1.1 June 1, 2005 57

USB Device Class Definition for Video Devices

D6-D7: Reserved. Set to zero.

3.7.2.6 Extension Unit Descriptor
The Extension Unit is uniquely identified by the value in the bUnitID field of the Extension Unit
descriptor (XUD). No other Unit or Terminal within the same video function may have the same
ID. This value must be passed with each request that is directed to the Extension Unit.

The Extension Unit Descriptor allows the hardware designer to define any arbitrary set of
controls such that a class driver can act as an intermediary between vendor-supplied host
software and functionality of the device.

The guidExtensionCode field contains a vendor-specific code that further identifies the
Extension Unit.

The bNrInPins field contains the number of Input Pins (p) of the Extension Unit. The
connectivity of the Input Pins is described via the baSourceID() array that contains p elements.
The index i into the array is one-based and directly related to the Input Pin numbers.
baSourceID(i) contains the ID of the Unit or Terminal to which Input Pin i is connected.

The bmControls field is a bitmap, indicating the availability of certain video Controls in the
Extension Unit. For future expandability, the number of bytes occupied by the bmControls field
is indicated in the bControlSize field. All Controls are optional.

An index to a string descriptor is provided to further describe the Extension Unit.

The following table outlines the Extension Unit descriptor.

Table 3-9 Extension Unit Descriptor
Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 24+p+n
1 bDescriptorType 1 Constant CS_INTERFACE descriptor type
2 bDescriptorSubtype 1 Constant VC_EXTENSION_UNIT descriptor

subtype
3 bUnitID 1 Number A non-zero constant that uniquely

identifies the Unit within the video
function. This value is used in all requests
to address this Unit.

4 guidExtensionCode 16 GUID Vendor-specific code identifying the
Extension Unit

20 bNumControls 1 Number Number of controls in this extension unit
21 bNrInPins 1 Number Number of Input Pins of this Unit: p
22 baSourceID(1) 1 Number ID of the Unit or Terminal to which the

first Input Pin of this Extension Unit is

Revision 1.1 June 1, 2005 58

USB Device Class Definition for Video Devices

connected.
… … … … …
22+(p-1) baSourceID(p) 1 Number ID of the Unit or Terminal to which the

last Input Pin of this Extension Unit is
connected.

22+p bControlSize 1 Number Size of the bmControls field, in bytes: n
23+p bmControls n Bitmap A bit set to 1 indicates that the mentioned

Control is supported:
D(n*8-1)..0: Vendor-specific

23+p+n iExtension 1 Index Index of a string descriptor that describes
this extension unit.

3.8 VideoControl Endpoint Descriptors
The following sections describe all possible endpoint-related descriptors for the VideoControl
interface.

3.8.1 VC Control Endpoint Descriptors

3.8.1.1 Standard VC Control Endpoint Descriptor
Because endpoint 0 is used as the VideoControl control endpoint, there is no dedicated standard
control endpoint descriptor.

3.8.1.2 Class-Specific VC Control Endpoint Descriptor
There is no dedicated class-specific control endpoint descriptor.

3.8.2 VC Interrupt Endpoint Descriptors
The standard and class-specific Interrupt Endpoint descriptors provide all information about the
device interrupt usage.

3.8.2.1 Standard VC Interrupt Endpoint Descriptor
The interrupt endpoint descriptor is identical to the standard endpoint descriptor defined in
section 9.6.6 "Endpoint" of USB Specification Revision 2.0. Its fields are set to reflect the
interrupt type of the endpoint. This endpoint is optional.

The following table outlines the standard VC Interrupt Endpoint descriptor.

Revision 1.1 June 1, 2005 59

USB Device Class Definition for Video Devices

Table 3-10 Standard VC Interrupt Endpoint Descriptor
Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes: 7
1 bDescriptorType 1 Constant ENDPOINT descriptor type
2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB

device described by this descriptor. The
address is encoded as follows:
D7: Direction. 1 = IN endpoint
D6..4: Reserved, reset to zero.
D3..0: The endpoint number, determined by
the designer.

3 bmAttributes 1 Bitmap D3..2: Synchronization type.
Must be set to 00 (None)
D1..0: Transfer type.
Must be set to 11 (Interrupt).
All other bits are reserved, and must be set to
zero.

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is
capable of sending or receiving when this
configuration is selected.

6 bInterval 1 Number Interval for polling endpoint for data
transfers.
For full-speed interrupt endpoints, this value
is expressed in frames, and must range from
1 to 255.
For high-speed interrupt endpoints, the
bInterval value is used as the exponent for a
2bInterval-1 value; e.g., a bInterval of 4 means
a period of 8 (23). This value must be from 1
to 16.

3.8.2.2 Class-specific VC Interrupt Endpoint Descriptor
The class-specific interrupt endpoint descriptor provides information about the maximum
interrupt structure size that the device is capable of sending. The host driver will use this value to
allocate a buffer of sufficient size to receive the maximum interrupt structure size. This
descriptor is mandatory if the standard interrupt endpoint descriptor is defined.

Revision 1.1 June 1, 2005 60

USB Device Class Definition for Video Devices

Table 3-11 Class-specific VC Interrupt Endpoint Descriptor
Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 5
1 bDescriptorType 1 Constant CS_ENDPOINT descriptor type
2 bDescriptorSubType 1 Constant EP_INTERRUPT descriptor type
3 wMaxTransferSize 2 Number Maximum interrupt structure size this

endpoint is capable of sending.

3.9 VideoStreaming Interface Descriptors
The VideoStreaming (VS) interface descriptors contain all relevant information to characterize
the VideoStreaming interface in full.

3.9.1 Standard VS Interface Descriptor
The standard VS interface descriptor is identical to the standard interface descriptor defined in
section 9.6.5 "Interface" of USB Specification Revision 2.0, except that some fields now have
dedicated values.

Table 3-12 Standard VS Interface Descriptor
Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes: 9
1 bDescriptorType 1 Constant INTERFACE descriptor type
2 bInterfaceNumber 1 Number Number of the interface. A zero-based value

identifying the index in the array of concurrent
interfaces supported by this configuration.

3 bAlternateSetting 1 Number Value used to select this alternate setting for
the interface identified in the prior field.

4 bNumEndpoints 1 Number Number of endpoints used by this interface
(excluding endpoint 0).

5 bInterfaceClass 1 Class CC_VIDEO. Video Interface Class code
(assigned by the USB). See section A.1,
"Video Interface Class Code".

6 bInterfaceSubClass 1 subclass SC_VIDEOSTREAMING. Video interface
subclass code (assigned by this specification).
See section A.2, "Video Interface Subclass
Codes".

7 bInterfaceProtocol 1 Protocol Not used. Must be set to
PC_PROTOCOL_UNDEFINED.

8 iInterface 1 Index Index of a string descriptor that describes this
interface.

Revision 1.1 June 1, 2005 61

USB Device Class Definition for Video Devices

3.9.2 Class-Specific VS Interface Descriptors
The class-specific VS interface descriptors consist of Input Header, Output Header, Format and
Frame descriptors.
There is a single Input or Output Header descriptor for each VS interface, and a separate Format
descriptor for each supported video stream format and a separate list of Frame descriptors for
each Format descriptor (if the Format requires Frame descriptors). Header, Format and Frame
descriptors are only defined in alternate setting 0 of the relevant interface. They are not repeated
within subsequent alternate settings of the same interface.

3.9.2.1 Input Header Descriptor
The Input Header descriptor is used for VS interfaces that contain an IN endpoint for streaming
video data. It provides information on the number of different format descriptors that will follow
it, as well as the total size of all class-specific descriptors in alternate setting zero of this interface.

The following table defines the class-specific VS interface Input Header descriptor.

Table 3-13 Class-specific VS Interface Input Header Descriptor
Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes: 13+(p*n).
1 bDescriptorType 1 Constant CS_INTERFACE descriptor type
2 bDescriptorSubtype 1 Constant VS_INPUT_HEADER descriptor subtype
3 bNumFormats 1 Number Number of video payload format

descriptors following for this interface
(excluding video frame descriptors): p

4 wTotalLength 2 Number Total number of bytes returned for the
class-specific VideoStreaming interface
descriptors including this header
descriptor.

6 bEndpointAddress 1 Endpoint The address of the isochronous or bulk
endpoint used for video data. The address
is encoded as follows:
D7: Direction
1 = IN endpoint
D6..4: Reserved, set to zero.
D3..0: The endpoint number, determined
by the designer.

7 bmInfo 1 Bitmap Indicates the capabilities of this
VideoStreaming interface:
D0: Dynamic Format Change supported
D7..1: Reserved, set to zero.

8 bTerminalLink 1 Constant The terminal ID of the Output Terminal to
which the video endpoint of this interface
is connected.

9 bStillCaptureMethod 1 Number Method of still image capture supported as

Revision 1.1 June 1, 2005 62

USB Device Class Definition for Video Devices

described in section 2.4.2.4, "Still Image
Capture":
0: None (Host software will not support
any form of still image capture)
1: Method 1
2: Method 2
3: Method 3

10 bTriggerSupport 1 Number Specifies if hardware triggering is
supported through this interface
0: Not supported
1: Supported

11 bTriggerUsage 1 Number Specifies how the host software shall
respond to a hardware trigger interrupt
event from this interface. This is ignored if
the bTriggerSupport field is zero.
0: Initiate still image capture
1: General purpose button event. Host
driver will notify client application of
button press and button release events

12 bControlSize 1 Number Size of each bmaControls(x) field, in
bytes: n

13 bmaControls(1) n Bitmap For bits D3..0, a bit set to 1 indicates that
the named field is supported by the Video
Probe and Commit Control when
bFormatIndex is 1:
D0: wKeyFrameRate
D1: wPFrameRate
D2: wCompQuality
D3: wCompWindowSize

For bits D5..4, a bit set to 1 indicates that
the named control is supported by the
device when bFormatIndex is 1:
D4: Generate Key Frame
D5: Update Frame Segment

D6..(n*8-1): Reserved, set to zero

… … … … …
13+
(p*n-
n)

bmaControls(p) n Bitmap For bits D3..0, a bit set to 1 indicates that
the named field is supported by the Video
Probe and Commit Control when
bFormatIndex is p:
D0: wKeyFrameRate
D1: wPFrameRate

Revision 1.1 June 1, 2005 63

USB Device Class Definition for Video Devices

D2: wCompQuality
D3: wCompWindowSize

For bits D5..4, a bit set to 1 indicates that
the named control is supported by the
device when bFormatIndex is p:
D4: Generate Key Frame
D5: Update Frame Segment

D6..(n*8-1): Reserved, set to zero

3.9.2.2 Output Header Descriptor
The Output Header descriptor is used for VS interfaces that contain an OUT endpoint for
streaming video data. It provides information on the number of different format descriptors that
will follow it, as well as the total size of all class-specific descriptors in alternate setting zero of
this interface.

The following table defines the class-specific VS interface output header descriptor:

Table 3-14 Class-specific VS Interface Output Header Descriptor
Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 9+(p*n)
1 bDescriptorType 1 Constant CS_INTERFACE descriptor type
2 bDescriptorSubtype 1 Constant VS_OUTPUT_HEADER descriptor

subtype
3 bNumFormats 1 Number Number of video payload format

descriptors following for this interface
(excluding video frame descriptors): p

4 wTotalLength 2 Number Total number of bytes returned for the
class-specific VideoStreaming interface
descriptors including this header
descriptor.

6 bEndpointAddress 1 Endpoint The address of the isochronous or bulk
endpoint used for video data. The address
is encoded as follows:
D7: Direction
0 = OUT endpoint
D6..4: Reserved, set to zero
D3..0: The endpoint number, determined
by the designer.

7 bTerminalLink 1 Constant The terminal ID of the Input Terminal to
which the video endpoint of this interface
is connected.

Revision 1.1 June 1, 2005 64

USB Device Class Definition for Video Devices

8 bControlSize 1 Number Size of each bmaControls(x) field, in
bytes: n

9 bmaControls(1) n Bitmap For bits D3..0, a bit set to 1 indicates that
the named field is supported by the Video
Probe and Commit Control when
bFormatIndex is 1:
D0: wKeyFrameRate
D1: wPFrameRate
D2: wCompQuality
D3: wCompWindowSize

D4..(n*8-1): Reserved, set to zero

… … … … …
9+(p*n-
n)

bmaControls(p) n Bitmap For bits D3..0, a bit set to 1 indicates that
the named field is supported by the Video
Probe and Commit Control when
bFormatIndex is p:
D0: wKeyFrameRate
D1: wPFrameRate
D2: wCompQuality
D3: wCompWindowSize

D4..(n*8-1): Reserved, set to zero

3.9.2.3 Payload Format Descriptors
A Payload Format descriptor defines the characteristics of a video stream with its specific format.
The following descriptors are defined in the separate Payload Specification documents that
accompany this document. For more information about a specific descriptor, see the
corresponding document.

Table 3-15 Payload Format Descriptor
Payload Format Descriptor Document

Uncompressed Video USB_Video_Payload_Uncompressed
MJPEG Video USB_Video_Payload_MJPEG
MPEG1-SS USB_Video_Payload_Stream_Based
MPEG2-PS USB_Video_Payload_Stream_Based
MPEG-2 TS USB_Video_Payload_MPEG2-TS
H.264 USB_Video_Payload_MPEG2-TS
SMTPE VC1 USB_Video_Payload_MPEG2-TS
MPEG-4 SL USB_Video_Payload_MPEG2-TS
DV USB_Video_Payload_DV
Vendor Defined USB_Video_Payload_Stream_Based or

Revision 1.1 June 1, 2005 65

USB Device Class Definition for Video Devices

USB_Video_Payload_Frame_Based

3.9.2.4 Video Frame Descriptor
A Video Frame descriptor (or Frame descriptor for short) is used to describe the decoded video
and still image frame dimensions and other frame-specific characteristics supported by Frame-
based formats. Frame descriptors (if required) immediately follow the associated Format
descriptor.
The following Video Frame descriptors are defined in the separate Payload Specification
documents that accompany this document. For more information about a specific frame
descriptor, see the corresponding document.

Table 3-16 Defined Video Frame Descriptor Resources
Video Frame Descriptor Document

Uncompressed USB_Video_Payload_Uncompressed
MJPEG USB_Video_Payload_MJPEG
Generic Frame-Based USB_Video_Payload_Frame_Based

3.9.2.5 Still Image Frame Descriptor
The Still Image Frame descriptor is only applicable for a VS interface that supports method 2 or
3 of still image capture in conjunction with frame-based Payload formats (e.g., MJPEG,
uncompressed, etc.). The Still Image Frame descriptor defines the characteristics of the still
image capture for these frame-based formats. A single still Image Frame descriptor follows the
Frame descriptor(s) for each Format descriptor group. If the Input Header descriptor’s
bStillCaptureMethod field is set to method 2 or 3, this Still Image Frame descriptor shall be
defined (see section 3.9.2.1, "Input Header Descriptor").

The Still Image Frame descriptor contains the range of image sizes available from the device,
which comprise the list of possible still image formats. To select a particular still image format,
host software sends control requests to the corresponding interface (see section 4.3.1.2, "Video
Still Probe Control and Still Commit Control").

The Still Image Frame descriptor is shown in Table 3-17 Still Image Frame Descriptor below.

The bEndpointAddress field contains the bulk endpoint address within the related VS interface
that is used for still image capture. The endpoint always functions as an IN-Endpoint.

The wWidth(x) and wHeight(x) fields form an array of image sizes supported by the device,
measured in pixels of an uncompressed image.

The bNumImageSizePatterns represents the number of wWidth and wHeight pairs in the array.

Revision 1.1 June 1, 2005 66

USB Device Class Definition for Video Devices

The bCompression field represents the image quality that would be generated by the device.
The range of compression values is from 0 to 255. A small value indicates a low compression
ratio and high quality image. The default setting of this value depends on device implementation.
The bCompression(x) fields form an array of compression ratios supported by the device for all
image sizes. The bNumCompressionPatterns field represents the number of bCompression
fields in this array.

A Still Image Frame descriptor identifies the following:

Table 3-17 Still Image Frame Descriptor
Offset Field Size Value Description

0 bLength 1 Number Size of this descriptor, in bytes: 10+(4*n)-
4+m

1 bDescriptorType 1 Constant CS_INTERFACE descriptor type
2 bDescriptorSubtype 1 Constant VS_STILL_IMAGE_FRAME descriptor

subtype
3 bEndpointAddress 1 Endpoint If method 3 of still image capture is used,

this contains the address of the bulk
endpoint used for still image capture. The
address is encoded as follows:
D7: Direction. (set to 1 = IN endpoint)
D6..4: Reserved, reset to zero
D3..0: The endpoint number, determined
by the designer
If method 2 of still image capture is used,
this field shall be set to zero.

4 bNumImageSizePat
terns

1 Number Number of Image Size patterns of this
format: n

5 wWidth(1) 2 Number Width of the still image in pattern 1
7 wHeight(1) 2 Number Height of the still image in pattern 1
… … … … …
… … … … …
5+4*n-
4

wWidth(n) 2 Number Width of the still image in pattern n

7+4*n-
4

wHeight(n) 2 Number Height of the still image in pattern n

9+4*n-
4

bNumCompression
Pattern

1 Number Number of Compression pattern of this
format: m

10+4*n
-4

bCompression(1) 1 Number Compression of the still image in pattern 1

… … … … …
10+4*n
-4+m-1

bCompression(m) 1 Number Compression of the still image in pattern
m

Revision 1.1 June 1, 2005 67

USB Device Class Definition for Video Devices

3.9.2.6 Color Matching Descriptor
The Color Matching descriptor is an optional descriptor used to describe the color profile of the
video data in an unambiguous way. Only one instance is allowed for a given format and if
present, the Color Matching descriptor shall be placed following the Video and Still Image
Frame descriptors for that format.

For example, this descriptor would be used with Uncompressed Video, MJPEG and MPEG-1
formats. It would not be used in the case MPEG-2, DV or MPEG-4 because the information is
already available implicitly (DV) or explicitly (MPEG-2, MPEG-4). If a format requires this
descriptor, the corresponding payload specification must enforce this requirement.
In the absence of this descriptor, or in the case of “Unspecified” values within the descriptor,
color matching defaults will be assumed. The color matching defaults are compliant with sRGB
since the BT.709 transfer function and the sRGB transfer function are very similar.

The viewing conditions and monitor setup are implicitly based on sRGB and the device should
compensate for them (D50 ambient white, dim viewing or 64 lux ambient illuminance, 2.2
gamma reference CRT, etc).

Table 3-18 Color Matching Descriptor
Offset Field Size Value Description
0 bLength 1 Constant 6
1 bDescriptorType 1 Number CS_INTERFACE type
2 bDescriptorSubtype 1 Number VS_COLORFORMAT
3 bColorPrimaries 1 Number This defines the color primaries

and the reference white.
0: Unspecified (Image
characteristics unknown)
1: BT.709, sRGB (default)
2: BT.470-2 (M)
3: BT.470-2 (B, G)
4: SMPTE 170M
5: SMPTE 240M
6-255: Reserved

4 bTransferCharacteristics 1 Number This field defines the opto-
electronic transfer characteristic of
the source picture also called the
gamma function.
0: Unspecified (Image
characteristics unknown)
1: BT.709 (default)
2: BT.470-2 M
3: BT.470-2 B, G

Revision 1.1 June 1, 2005 68

USB Device Class Definition for Video Devices

4: SMPTE 170M
5: SMPTE 240M
6: Linear (V = Lc)
7: sRGB (very similar to BT.709)
8-255: Reserved

5 bMatrixCoefficients 1 Number Matrix used to compute luma and
chroma values from the color
primaries.
0: Unspecified (Image
characteristics unknown)
1: BT. 709
2: FCC
3: BT.470-2 B, G
4: SMPTE 170M (BT.601,
default)
5: SMPTE 240M
6-255: Reserved

3.10 VideoStreaming Endpoint Descriptors
The following sections describe all possible endpoint-related descriptors for the VideoStreaming
interface.

3.10.1 VS Video Data Endpoint Descriptors
The video data endpoint can be implemented as either an isochronous or bulk endpoint. The
standard isochronous or bulk endpoint descriptor provides pertinent information about how video
data streams are communicated to the video function. In addition, specific endpoint capabilities
and properties are reported.

3.10.1.1 Standard VS Isochronous Video Data Endpoint Descriptor
The standard VS isochronous video data endpoint descriptor is identical to the standard endpoint
descriptor defined in section 9.6.6 "Endpoint" of USB Specification Revision 2.0. D7 of the
bEndpointAddress field indicates whether the endpoint is a video source (D7 = 1) or a video
sink (D7 = 0). The bmAttributes field bits are set to reflect the isochronous type of the endpoint.
The synchronization type is indicated by D3..2 and must be set to Asynchronous. For further
details, refer to section 5.12.4.1 "Synchronization Type," of USB Specification Revision 2.0.

Table 3-19 Standard VS Isochronous Video Data Endpoint Descriptor
Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes: 7
1 bDescriptorType 1 Constant ENDPOINT descriptor type
2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB

Revision 1.1 June 1, 2005 69

USB Device Class Definition for Video Devices

device described by this descriptor. The
address is encoded as follows:
D7: Direction
0 = OUT endpoint
1 = IN endpoint
D6..4: Reserved, reset to zero
D3..0: The endpoint number, determined by
the designer

3 bmAttributes 1 Bitmap D3..2: Synchronization type
01 = Asynchronous
D1..0: Transfer type
01 = Isochronous
All other bits are reserved.

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is
capable of sending or receiving when this
configuration is selected.
This is determined by the video bandwidth
constraints of the endpoint.

6 bInterval 1 Number Interval for polling endpoint for data
transfers.
This value is expressed as a period of frames
or microframes depending on device speed,
and must range from 1 to 16. The bInterval
value is used as the exponent for a 2bInterval-1
period.

3.10.1.2 Standard VS Bulk Video Data Endpoint Descriptor
The standard VS Bulk video data endpoint descriptor is identical to the standard endpoint
descriptor defined in section 9.6.6 "Endpoint" of USB Specification Revision 2.0. D7 of the
bEndpointAddress field indicates that this endpoint is a data source (D7 = 1) or a video sink
(D7 = 0). The bmAttributes field bits are set to reflect the bulk type of the endpoint.

Table 3-20 Standard VS Bulk Video Data Endpoint Descriptor
Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes: 7
1 bDescriptorType 1 Constant ENDPOINT descriptor type
2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB

device described by this descriptor. The
address is encoded as follows:
D7: Direction
0 = OUT endpoint
1 = IN endpoint
D6..4: Reserved, reset to zero

Revision 1.1 June 1, 2005 70

USB Device Class Definition for Video Devices

D3..0: The endpoint number, determined by
the designer

3 bmAttributes 1 Bitmap D1..0: Transfer type (set to 10 = Bulk)
All other bits are reserved.

4 wMaxPacketSize 2 Number Maximum packet size this endpoint is
capable of sending or receiving when this
configuration is selected.

6 bInterval 1 Number Interval for polling endpoint for data
transfers.
For high-speed bulk OUT endpoints, the
bInterval must specify the maximum NAK
rate of the endpoint. A value of 0 indicates
the endpoint never NAKs. Other values
indicate at most 1 NAK each bInterval
number of microframes. This value must be
in the range from 0 to 255.

3.10.2 VS Bulk Still Image Data Endpoint Descriptors
The standard bulk still image data endpoint descriptor provides pertinent information on how
still image data are communicated to the video function. In addition, specific endpoint
capabilities and properties are reported.

3.10.2.1 Standard VS Bulk Still Image Data Endpoint Descriptor
The standard VS Bulk still image data endpoint descriptor is identical to the standard endpoint
descriptor defined in section 9.6.6 "Endpoint" of USB Specification Revision 2.0. D7 of the
bEndpointAddress field indicates that this endpoint is a data source (D7 = 1). The
bmAttributes field bits are set to reflect the bulk type of the endpoint.

This optional endpoint is only implemented by the device if it supports method 3 of still image
capture. If implemented, it should always follow the Video Data endpoint (where available) in
descriptor ordering and endpoint addressing.

Table 3-21 Standard VS Bulk Still Image Data Endpoint Descriptor
Offset Field Size Value Description
0 bLength 1 Number Size of this descriptor, in bytes: 7
1 bDescriptorType 1 Constant ENDPOINT descriptor type
2 bEndpointAddress 1 Endpoint The address of the endpoint on the USB

device described by this descriptor. The
address is encoded as follows:
D7: Direction (set to 1 = IN endpoint)
D6..4: Reserved, reset to zero
D3..0: The endpoint number, determined by

Revision 1.1 June 1, 2005 71

USB Device Class Definition for Video Devices

the designer
3 bmAttributes 1 Bitmap D1..0: Transfer type (set to 10 = Bulk)

All other bits are reserved.
4 wMaxPacketSize 2 Number Maximum packet size this endpoint is

capable of sending or receiving when this
configuration is selected.

6 bInterval 1 Number Not used, set to zero.

3.11 String Descriptors
The baseline requirement for devices in this class is for the device implementation to provide a
function name string descriptor in US English (LANGID = 0x0409). This will be referenced in
the iInterface field in the standard VideoControl interface descriptor. See section 3.7.1,
"Standard VC Interface Descriptor".

If the VideoControl interface is part of a Video Interface Collection, the iFunction field in the
IAD and the iInterface field in the Standard VC interface descriptor for this Video Interface
Collection must be equal. See section 3.6, "Interface Association Descriptor".

All other string descriptors are optional.

Since the device must implement the device name string descriptor, it must also support String
Descriptor Zero which contains the list of LANGID codes supported by the device. This
descriptor, as well as the layout of a standard UNICODE String Descriptor, is defined in section
9.6.7 "String" of the USB Specification Revision 2.0.

Revision 1.1 June 1, 2005 72

USB Device Class Definition for Video Devices

4 Class-Specific Requests
Most class-specific requests are used to set and get video related Controls. These Controls fall
into two main groups: those that manipulate controls related to the video function, such as
brightness, exposure, selector position, etc. and those that influence data transfer over a video
data endpoint, such as the current frame rate.

• VideoControl Requests. Control of a video function is performed through the
manipulation of the attributes of individual Controls that are embedded in the Units and
Terminals of the video function. The class-specific VideoControl interface descriptor
contains a collection of Unit and Terminal descriptors, each indicating which Controls
are present in each entity. VideoControl requests are always directed to the single
VideoControl interface of the video function. The request contains enough information
(Unit ID, Control Selector) for the video function to route a specific request correctly.

• VideoStreaming Requests. Control of the class-specific behavior of a VideoStreaming
interface is performed through manipulation of Interface Controls. VideoStreaming
requests are directed to the interface where the Control resides.

Requests may be mandatory or optional and listed as such for every control. Where SET_CUR is
optional, its presence is determined via GET_INFO. If a video function does not support a
certain request, it must indicate this by stalling the control pipe when that request is issued to the
function.

4.1 Request Layout
The following paragraphs describe the general structure of the Set and Get requests. Subsequent
paragraphs detail the use of the Set/Get requests for the different request types.

4.1.1 Set Request
This request is used to set an attribute of a Control inside an entity of the video function.

Table 4-1 Set Request
bmRequestType bRequest wValue wIndex wLength Data
00100001 Entity ID and

Interface.
00100010

SET_CUR See
following
paragraphs. Endpoint.

Length of
parameter
block.

Parameter
block.

The bmRequestType field specifies that this is a SET request (D7=0). It is a class-specific
request (D6..5=01), directed to either the VideoControl interface, or a VideoStreaming interface
of the video function (D4..0=00001), or the video data endpoint of a VideoStreaming interface
(D4..0=00010).

Revision 1.1 June 1, 2005 73

USB Device Class Definition for Video Devices

The bRequest field contains a constant that identifies which attribute of the addressed Control is
to be modified. Possible attributes for a Control are:

• Current setting attribute (SET_CUR)

If the addressed Control or entity does not support modification of a certain attribute, the control
pipe must indicate a stall when an attempt is made to modify that attribute. Only the CUR
attribute is supported for the Set request. For the list of Request constants, refer to section A.8,
"Video Class-Specific Request Codes"

The wValue field interpretation is qualified by the value in the wIndex field. Depending on what
entity is addressed, the layout of the wValue field changes. The following paragraphs describe
the contents of the wValue field for each entity separately. In most cases, the wValue field
contains the Control Selector (CS) in the high byte. It is used to address a particular Control
within entities that can contain multiple Controls. If the entity only contains a single Control,
there is no need to specify a Control Selector and the wValue field can be used to pass additional
parameters.

The wIndex field specifies the interface or endpoint to be addressed in the low byte, and the
entity ID or zero in the high byte. In case an interface is addressed, the virtual entity "interface"
can be addressed by specifying zero in the high byte. The values in wIndex must be appropriate
to the recipient. Only existing entities in the video function can be addressed, and only
appropriate interface or endpoint numbers may be used. If the request specifies an unknown or
non-entity ID or an unknown interface or endpoint number, the control pipe must indicate a stall.

The actual parameter(s) for the Set request are passed in the data stage of the control transfer.
The length of the parameter block is indicated in the wLength field of the request. The layout of
the parameter block is qualified by both the bRequest and wIndex fields. Refer to the following
sections for a detailed description of the parameter block layout for all possible entities.

4.1.2 Get Request
This request returns the attribute setting of a specific Control inside an entity of the video
function.

Revision 1.1 June 1, 2005 74

USB Device Class Definition for Video Devices

Table 4-2 Get Request
bmRequestType bRequest wValue wIndex wLength Data
10100001 Entity ID and

Interface
10100010

GET_CUR
GET_MIN
GET_MAX
GET_RES
GET_LEN
GET_INFO
GET_DEF

See following
paragraphs.

Endpoint.

Length of
parameter
block

Parameter
block

The bmRequestType field specifies that this is a GET request (D7=1). It is a class-specific
request (D6..5=01), directed to either the VideoControl interface or a VideoStreaming interface
of the video function (D4..0=00001), or the video data endpoint of a VideoStreaming interface
(D4..0=00010).

The bRequest field contains a constant that identifies which attribute of the addressed Control or
entity is to be returned. Possible attributes for a Control are:

• Current setting attribute (GET_CUR)
• Minimum setting attribute (GET_MIN)
• Maximum setting attribute (GET_MAX)
• Default setting attribute (GET_DEF)
• Resolution attribute (GET_RES)
• Data length attribute (GET_LEN)
• Information attribute (GET_INFO)

The GET_INFO request queries the capabilities and status of the specified control. When issuing
this request, the wLength field shall always be set to a value of 1 byte. The result returned is a
bit mask reporting the capabilities of the control. The bits are defined as:

Table 4-3 Defined Bits Containing Capabilities of the Control
Bit field Description Bit State

D0 1=Supports GET value requests Capability
D1 1=Supports SET value requests Capability
D2 1=Disabled due to automatic mode (under

device control)
State

D3 1= Autoupdate Control (see section 2.4.2.2
"Status Interrupt Endpoint")

Capability

D4 1= Asynchronous Control (see sections
2.4.2.2 "Status Interrupt Endpoint" and 2.4.4,
“Control Transfer and Request Processing”)

Capability

D7..D5 Reserved (Set to 0) --

Revision 1.1 June 1, 2005 75

USB Device Class Definition for Video Devices

The only bit in GET_INFO that reflects the state of the control is D2 (Disabled due to Automatic
Mode), the other bits are capability bits, thus when a control is set in Automatic Mode (D2 set),
the bit D1 must not be updated in GET_INFO.
If a control is implemented such that D2 can be set, the device needs to have the capability of
sending Control Change Interrupts, thus D3 (Autoupdate Control) must be set.

The device indicates hardware default values for Unit, Terminal and Interface Controls through
their GET_DEF values. These values may be used by the host to restore a control to its default
setting.

If the addressed Control or entity does not support readout of a certain attribute, the control pipe
must indicate a stall when an attempt is made to read that attribute. For the list of Request
constants, refer to section A.8, "Video Class-Specific Request Codes".

The wValue field interpretation is qualified by the value in the wIndex field. Depending on what
entity is addressed, the layout of the wValue field changes. The following paragraphs describe
the contents of the wValue field for each entity separately. In most cases, the wValue field
contains the Control Selector (CS) in the high byte. It is used to address a particular Control
within entities that can contain multiple Controls. If the entity only contains a single Control,
there is no need to specify a Control Selector and the wValue field can be used to pass additional
parameters.

The wIndex field specifies the interface or endpoint to be addressed in the low byte, and the
entity ID or zero in the high byte. In case an interface is addressed, the virtual entity "interface"
can be addressed by specifying zero in the high byte. The values in wIndex must be appropriate
to the recipient. Only existing entities in the video function can be addressed, and only
appropriate interface or endpoint numbers may be used. If the request specifies an unknown or
non-entity ID, or an unknown interface or endpoint number, the control pipe must indicate a stall.

The actual parameter(s) for the Get request are returned in the data stage of the control transfer.
The length of the parameter block to return is indicated in the wLength field of the request. If
the parameter block is longer than is indicated in the wLength field, only the initial bytes of the
parameter block are returned. If the parameter block is shorter than is indicated in the wLength
field, the device indicates the end of the control transfer by sending a short packet when further
data is requested. The layout of the parameter block is qualified by both the bRequest and
wIndex fields. Refer to the following sections for a detailed description of the parameter block
layout for all possible entities.

4.2 VideoControl Requests
The following sections describe the possible requests that can be used to manipulate the video
Controls that a video function exposes through its VideoControl interface and Units contained
within it. The same layout of the parameter blocks is used for both the Set and Get requests.

Revision 1.1 June 1, 2005 76

USB Device Class Definition for Video Devices

Each of the following control definitions specifies whether requests are mandatory or optional
for that control. Any implemented request must comply with the definition for that control. The
device manufacturer is free to implement any other requests, but the definition of those
unspecified requests shall be ignored by host implementations, with the exception of the
GET_LEN request. If the GET_LEN request is implemented, the host software will use the result
to determine the correct buffer length for Set and Get requests.

4.2.1 Interface Control Requests
These requests are used to set or read an attribute of an interface Control inside the VideoControl
interface of the video function.

Table 4-4 Interface Control Requests
bmRequestType bRequest wValue wIndex wLength Data
00100001 SET_CUR

10100001 GET_CUR
GET_MIN
GET_MAX
GET_RES
GET_INFO

CS Zero and
Interface.

Length of
parameter
block.

Parameter
block.

The bRequest field indicates which attribute the request is manipulating. The MIN, MAX, and
RES attributes are not supported for the Set request.

The wValue field specifies the Control Selector (CS) in the high byte, and the low byte must be
set to zero. The Control Selector indicates which type of Control this request is manipulating. If
the request specifies an unknown CS to that endpoint, the control pipe must indicate a stall.

4.2.1.1 Power Mode Control
This control sets the device power mode. Power modes are defined in the following table.

Table 4-5 Power Mode Control
Device power mode Description

Full power mode Device operates at full functionality in this mode. For example,
the device can stream video data via USB, and can execute all
requests that are supported by the device. This mode is
mandatory, even if the device doesn’t support VIDEO POWER
MODE CONTROL.

Revision 1.1 June 1, 2005 77

USB Device Class Definition for Video Devices

Vendor-dependent
power mode

Device operates in low power mode. In this mode, the device
continues to operate, although not at full functionality.
For example, as the result of setting the device to this power
mode, the device will stop the Zoom function. To avoid
confusing the user, the device should issue an interrupt
(GET_INFO) to notify the user that the Zoom function is
disabled.
In this mode, the device can stream video data, the functionality
of USB is not affected, and the device can execute all requests
that it supports.
This mode is optional.

The power mode that is supported by the device must be passed to the host, as well as the power
source, since if the device is working with battery power, the host can change the device power
mode to “vendor-dependent power mode” to reduce power consumption.
Information regarding power modes and power sources is communicated through the following
bit fields. D7..D5 indicates which power source is currently used in the device. The D4 indicates
that the device supports “vendor-dependent power mode”. Bits D7..D4 are set by the device and
are read-only. The host can change the device power mode by setting a combination of D3..D0.

The host can update the power mode during video streaming.

The D3..D0 value of 0000B indicates that the device is in, or should transition to, full power
mode. The D3..D0 value of 0001B indicates that the device is in, or should transition to, vendor-
dependent power mode.
The host must specify D3..D0 only when the power mode is required to switch, and the other
fields must be set to 0.

Table 4-6 Device Power Mode
Control selector VC_VIDEO_POWER_MODE_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO
wLength 1
Offset Field Size Value Description

Bit Description R W
D3..0 Power Mode setting

0000B:Full power mode
0001B:device dependent

power mode (opt.)
All other bits are reserved.

o o

0 bDevicePowerMode 1 Bitmap

D4 Device dependent power
mode supported.

o x

Revision 1.1 June 1, 2005 78

USB Device Class Definition for Video Devices

D5 Device uses power
supplied by USB.

o x

D6 Device uses power
supplied by Battery.

o x

D7 Device uses power
supplied by A.C.

o x

4.2.1.2 Request Error Code Control
This read-only control indicates the status of each host-initiated request to a Terminal, Unit,
interface or endpoint of the video function. If the device is unable to fulfill the request, it will
indicate a stall on the control pipe and update this control with the appropriate code to indicate
the cause. This control will be reset to 0 (No error) upon the successful completion of any control
request (including requests to this control). Asynchronous control requests are a special case,
where the initial request will update this control, but the final result is delivered via the Status
Interrupt Endpoint (see sections 2.4.2.2, "Status Interrupt Endpoint" and 2.4.4, "Control Transfer
and Request Processing").

Table 4-7 Request Error Code Control
Control Selector VC_REQUEST_ERROR_CODE_CONTROL
Mandatory Requests GET_CUR, GET_INFO
wLength 1
Offset Field Size Value Description
0 bRequestErrorCode 1 Number 0x00: No error

0x01: Not ready
0x02: Wrong state
0x03: Power
0x04: Out of range
0x05: Invalid unit
0x06: Invalid control
0x07: Invalid Request
0x08-0xFE: Reserved for future use
0xFF: Unknown

No error: The request succeeded.

Not ready: The device has not completed a previous operation. The device will recover from this
state as soon as the previous operation has completed.

Wrong State: The device is in a state that disallows the specific request. The device will remain
in this state until a specific action from the host or the user is completed.

Power: The actual Power Mode of the device is not sufficient to complete the Request.

Revision 1.1 June 1, 2005 79

USB Device Class Definition for Video Devices

Out of Range: Result of a SET_CUR Request when attempting to set a value outside of the MIN
and MAX range, or a value that does not satisfy the constraint on resolution (see section 4.2.2,
“Unit and Terminal Control Requests”).

Invalid Unit: The Unit ID addressed in this Request is not assigned.

Invalid Control: The Control addressed by this Request is not supported.

Invalid Request: This Request is not supported by the Control.

4.2.2 Unit and Terminal Control Requests
These requests are used to set or read an attribute of a Terminal Control inside a Terminal of the
video function.

Table 4-8 Unit and Terminal Control Requests
bmRequestType bRequest wValue wIndex wLength Data

00100001 SET_CUR

10100001 GET_CUR
GET_MIN
GET_MAX
GET_RES
GET_INFO
GET_DEF

CS Unit or
Terminal ID
and Interface

Length of
parameter
block

Parameter
block

The bRequest field indicates which attribute the request is manipulating. The MIN, MAX and
RES attributes are not supported for the Set request.

The wValue field specifies the Control Selector (CS) in the high byte, and zero in the low byte.
The Control Selector indicates which type of Control this request is manipulating. If the request
specifies an unknown or unsupported CS to that Unit or Terminal, the control pipe must indicate
a stall.

If a Control supports GET_MIN, GET_MAX and GET_RES requests, the values of MAX, MIN
and RES shall be constrained such that (MAX-MIN)/RES is an integral number. Furthermore, the
CUR value (returned by GET_CUR, or set via SET_CUR) shall be constrained such that (CUR-
MIN)/RES is an integral number. The device shall indicate protocol STALL and update the
Request Error Code Control with 0x04 “Out of Range” if an invalid CUR value is provided in a
SET_CUR operation (see section 2.4.4, “Control Transfer and Request Processing”).

There are special Terminal types (such as the Camera Terminal and Media Transport Terminal)
that have type-specific Terminal Controls defined. The controls for the Media Transport
Terminal are defined in a companion specification (see the USB Device Class Definition for

Revision 1.1 June 1, 2005 80

USB Device Class Definition for Video Devices

Video Media Transport Terminal specification). The controls for the Camera Terminal are
defined in the following sections.

4.2.2.1 Camera Terminal Control Requests
The following paragraphs present a detailed description of all possible Controls a Camera
Terminal can incorporate. For each Control, the layout of the parameter block together with the
appropriate Control Selector is listed for all forms of the Get/Set Camera Terminal Control
request. All values are interpreted as absolute (fixed-origin), and not relative unless otherwise
specified. They are also assumed to be unsigned unless otherwise specified.

4.2.2.1.1 Scanning Mode Control
The Scanning Mode Control setting is used to control the scanning mode of the camera sensor. A
value of 0 indicates that the interlace mode is enabled, and a value of 1 indicates that the
progressive or the non-interlace mode is enabled.

Table 4-9 Scanning Mode Control
Control Selector CT_SCANNING_MODE_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO
wLength 1
Offset Field Size Value Description
0 bScanningMode 1 Boolean The setting for the attribute of the

addressed Scanning Mode Control:
0: Interlaced
1: Progressive

4.2.2.1.2 Auto-Exposure Mode Control
The Auto-Exposure Mode Control determines whether the device will provide automatic
adjustment of the Exposure Time and Iris controls. Attempts to programmatically set the auto-
adjusted controls are then ignored. A GET_RES request issued to this control will return a
bitmap of the modes supported by this control. A valid request to this control would have only
one bit set (a single mode selected). This control must accept the GET_DEF request and return
its default value.

Table 4-10 Auto-Exposure Mode Control
Control Selector CT_AE_MODE_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_RES, GET_INFO,

GET_DEF
wLength 1
Offset Field Size Value Description
0 bAutoExposureMode 1 Bitmap The setting for the attribute of the

Revision 1.1 June 1, 2005 81

USB Device Class Definition for Video Devices

addressed Auto-Exposure Mode
Control:
D0: Manual Mode – manual
Exposure Time, manual Iris
D1: Auto Mode – auto Exposure
Time, auto Iris
D2: Shutter Priority Mode –
manual Exposure Time, auto Iris
D3: Aperture Priority Mode – auto
Exposure Time, manual Iris
D4..D7: Reserved, set to zero.

4.2.2.1.3 Auto-Exposure Priority Control
The Auto-Exposure Priority Control is used to specify constraints on the Exposure Time Control
when the Auto-Exposure Mode Control is set to Auto Mode or Shutter Priority Mode. A value of
zero indicates that the frame rate must remain constant. A value of 1 indicates that the frame rate
may be dynamically varied by the device. The default value is zero (0).

Table 4-11 Auto-Exposure Priority Control
Control Selector CT_AE_PRIORITY_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO
wLength 1
Offset Field Size Value Description
0 bAutoExposurePriority 1 Number The setting for the attribute of the

addressed AutoExposure Priority
control.

4.2.2.1.4 Exposure Time (Absolute) Control
The Exposure Time (Absolute) Control is used to specify the length of exposure. This value is
expressed in 100µs units, where 1 is 1/10,000th of a second, 10,000 is 1 second, and 100,000 is
10 seconds. A value of zero (0) is undefined. Note that the manual exposure control is further
limited by the frame interval, which always has higher precedence. If the frame interval is
changed to a value below the current value of the Exposure Control, the Exposure Control value
will automatically be changed. The default Exposure Control value will be the current frame
interval until an explicit exposure value is chosen. This control will not accept SET requests
when the Auto-Exposure Mode control is in Auto mode or Aperture Priority mode, and the
control pipe shall indicate a stall in this case. This control must accept the GET_DEF request and
return its default value.

Revision 1.1 June 1, 2005 82

USB Device Class Definition for Video Devices

Table 4-12 Exposure Time (Absolute) Control
Control Selector CT_EXPOSURE_TIME_ABSOLUTE_CONTROL
Mandatory Requests GET_CUR, GET_MIN, GET_MAX, GET_RES,

GET_INFO, GET_DEF
Optional Requests SET_CUR
wLength 4
Offset Field Size Value Description
0 dwExposureTimeAbsolute 4 Number The setting for the attribute of the

addressed Exposure Time
(Absolute) Control:
0: Reserved
1: 0.0001 sec
…
100000: 10 sec
…

4.2.2.1.5 Exposure Time (Relative) Control
The Exposure Time (Relative) Control is used to specify the electronic shutter speed. This value
is expressed in number of steps of exposure time that is incremented or decremented. A value of
one (1) indicates that the exposure time is incremented one step further, and a value 0xFF
indicates that the exposure time is decremented one step further. This step is implementation
specific. A value of zero (0) indicates that the exposure time is set to the default value for
implementation. The default values are implementation specific. This control will not accept
SET requests when the Auto-Exposure Mode control is in Auto mode or Aperture Priority mode,
and the control pipe shall indicate a stall in this case.

If both Relative and Absolute Controls are supported, a SET_CUR to the Relative Control with a
value other than 0x00 shall result in a Control Change interrupt for the Absolute Control (see
section 2.4.2.2, “Status Interrupt Endpoint”).

Table 4-13 Exposure Time (Relative) Control
Control Selector CT_EXPOSURE_TIME_RELATIVE_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO
wLength 1
Offset Field Size Value Description
0 bExposureTimeRelative 1 Signed

Number
The setting for the attribute of the
addressed Exposure Time (Relative)
Control:
0: default
1: incremented by 1 step
0xFF: decremented by 1 step

Revision 1.1 June 1, 2005 83

USB Device Class Definition for Video Devices

4.2.2.1.6 Focus (Absolute) Control

The Focus (Absolute) Control is used to specify the distance to the optimally focused target. This
value is expressed in millimeters. The default value is implementation-specific. This control
must accept the GET_DEF request and return its default value.

Table 4-14 Focus (Absolute) Control
Control Selector CT_FOCUS_ABSOLUTE_CONTROL
Mandatory Requests GET_CUR, GET_MIN, GET_MAX, GET_RES, GET_INFO,

GET_DEF
Optional Requests SET_CUR
wLength 2
Offset Field Size Value Description
0 wFocusAbsolute 2 Number The setting for the attribute of the

addressed Focus (Absolute) Control.

4.2.2.1.7 Focus (Relative) Control
The Focus (Relative) Control is used to move the focus lens group to specify the distance to the
optimally focused target.
The bFocusRelative field indicates whether the focus lens group is stopped or is moving for
near or for infinity direction. A value of 1 indicates that the focus lens group is moved for near
direction. A value of 0 indicates that the focus lens group is stopped. And a value of 0xFF
indicates that the lens group is moved for infinity direction. The GET_MIN, GET_MAX,
GET_RES and GET_DEF requests will return zero for this field.

The bSpeed field indicates the speed of the lens group movement. A low number indicates a
slow speed and a high number indicates a high speed. The GET_MIN, GET_MAX and
GET_RES requests are used to retrieve the range and resolution for this field. The GET_DEF
request is used to retrieve the default value for this field. If the control does not support speed
control, it will return the value 1 in this field for all these requests.

If both Relative and Absolute Controls are supported, a SET_CUR to the Relative Control with a
value other than 0x00 shall result in a Control Change interrupt for the Absolute Control at the
end of the movement (see section 2.4.2.2, “Status Interrupt Endpoint”). The end of movement
can be due to physical device limits, or due to an explicit request by the host to stop the
movement. If the end of movement is due to physical device limits (such as a limit in range of
motion), a Control Change interrupt shall be generated for this Relative Control. If there is no
limit in range of motion, a Control Change interrupt is not required.

Revision 1.1 June 1, 2005 84

USB Device Class Definition for Video Devices

Table 4-15 Focus (Relative) Control
Control Selector CT_FOCUS_RELATIVE_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO, GET_DEF, GET_MIN,

GET_MAX, GET_RES
wLength 2
Offset Field Size Value Description
0 bFocusRelative 1 Signed

number
The setting for the attribute of the
addressed Focus (Relative) Control:
0: Stop
1: Focus Near direction
0xFF: Focus Infinite direction

1 bSpeed 1 Number Speed for the control change

4.2.2.1.8 Focus, Auto Control
The Focus, Auto Control setting determines whether the device will provide automatic
adjustment of the Focus Absolute and/or Relative Controls. A value of 1 indicates that automatic
adjustment is enabled. Attempts to programmatically set the related controls are then ignored.
This control must accept the GET_DEF request and return its default value.

Table 4-16 Focus, Auto Control
Control Selector CT_FOCUS_AUTO_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO, GET_DEF
wLength 1
Offset Field Size Value Description
0 bFocusAuto 1 Boolean The setting for the attribute of the

addressed Focus Auto control.

4.2.2.1.9 Iris (Absolute) Control
The Iris (Absolute) Control is used to specify the camera's aperture setting. This value is
expressed in units of fstop * 100. The default value is implementation-specific.
This control will not accept SET requests when the Auto-Exposure Mode control is in Auto
mode or Shutter Priority mode, and the control pipe shall indicate a stall in this case. This control
must accept the GET_DEF request and return its default value.

Revision 1.1 June 1, 2005 85

USB Device Class Definition for Video Devices

Table 4-17 Iris (Absolute) Control
Control Selector CT_IRIS_ABSOLUTE_CONTROL
Mandatory Requests GET_CUR, GET_MIN, GET_MAX, GET_RES, GET_INFO,

GET_DEF
Optional Requests SET_CUR
wLength 2
Offset Field Size Value Description
0 wIrisAbsolute 2 Number The setting for the attribute of the

addressed Iris (Absolute) Control.

4.2.2.1.10 Iris (Relative) Control
The Iris (Relative) Control is used to specify the camera's aperture setting. This value is a signed
integer and indicates the number of steps to open or close the iris. A value of 1 indicates that the
iris is opened 1 step further. A value of 0xFF indicates that the iris is closed 1 step further. This
step of iris is implementation specific. A value of zero (0) indicates that the iris is set to the
default value for the implementation. The default value is implementation specific. This control
will not accept SET requests when the Auto-Exposure Mode control is in Auto mode or Shutter
Priority mode, and the control pipe shall indicate a stall in this case.

If both Relative and Absolute Controls are supported, a SET_CUR to the Relative Control with a
value other than 0x00 shall result in a Control Change interrupt for the Absolute Control (see
section 2.4.2.2, “Status Interrupt Endpoint”).

Table 4-18 Iris (Relative) Control
Control Selector CT_IRIS_RELATIVE_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO
wLength 1
Offset Field Size Value Description
0 bIrisRelative 1 Number The setting for the attribute of the

addressed Iris (Relative) Control:
0: Default
1: Iris is opened by 1 step.
0xFF: Iris is closed by 1 step.

4.2.2.1.11 Zoom (Absolute) Control
The Zoom (Absolute) Control is used to specify or determine the Objective lens focal length.
This control is used in combination with the wObjectiveFocalLengthMin and
wObjectiveFocalLengthMax fields in the Camera Terminal descriptor to describe and control
the Objective lens focal length of the device (see section 2.4.2.5.1 "Optical Zoom"). The MIN

Revision 1.1 June 1, 2005 86

USB Device Class Definition for Video Devices

and MAX values are sufficient to imply the resolution, so the RES value must always be 1. The
MIN, MAX and default values are implementation dependent. This control must accept the
GET_DEF request and return its default value.

Table 4-19 Zoom (Absolute) Control
Control Selector CT_ZOOM_ABSOLUTE_CONTROL
Mandatory Requests GET_CUR, GET_MIN, GET_MAX, GET_RES,

GET_INFO, GET_DEF
Optional Requests SET_CUR
wLength 2
Offset Field Size Value Description
0 wObjectiveFocalLength 2 Number The value of Zcur (see section

2.4.2.5.1 "Optical Zoom".)

4.2.2.1.12 Zoom (Relative) Control
The Zoom (Relative) Control is used to specify the zoom focal length relatively as powered
zoom.

The bZoom field indicates whether the zoom lens group is stopped or the direction of the zoom
lens. A value of 1 indicates that the zoom lens is moved towards the telephoto direction. A value
of zero indicates that the zoom lens is stopped, and a value of 0xFF indicates that the zoom lens
is moved towards the wide-angle direction. The GET_MIN, GET_MAX, GET_RES and
GET_DEF requests will return zero for this field.

The bDigitalZoom field specifies whether digital zoom is enabled or disabled. If the device only
supports digital zoom, this field would be ignored. The GET_DEF request will return the default
value for this field. The GET_MIN, GET_MAX and GET_RES requests will return zero for this
field.

The bSpeed field indicates the speed of the control change. A low number indicates a slow speed
and a high number indicates a higher speed. The GET_MIN, GET_MAX and GET_RES
requests are used to retrieve the range and resolution for this field. The GET_DEF request is
used to retrieve the default value for this field. If the control does not support speed control, it
will return the value 1 in this field for all these requests.

If both Relative and Absolute Controls are supported, a SET_CUR to the Relative Control with a
value other than 0x00 shall result in a Control Change interrupt for the Absolute Control at the
end of the movement (see section 2.4.2.2, “Status Interrupt Endpoint”). The end of movement
can be due to physical device limits, or due to an explicit request by the host to stop the
movement. If the end of movement is due to physical device limits (such as a limit in range of
motion), a Control Change interrupt shall be generated for this Relative Control.

Revision 1.1 June 1, 2005 87

USB Device Class Definition for Video Devices

Table 4-20 Zoom (Relative) Control
Control Selector CT_ZOOM_RELATIVE_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO, GET_DEF, GET_MIN,

GET_MAX, GET_RES
wLength 3
Offset Field Size Value Description
0 bZoom 1 Signed

number
The setting for the attribute of the
addressed Zoom Control:
0: Stop
1: moving to telephoto direction
0xFF: moving to wide-angle direction

1 bDigitalZoom 1 Boolean 0: Digital Zoom OFF
1: Digital Zoom On

2 bSpeed 1 Number Speed for the control change

4.2.2.1.13 PanTilt (Absolute) Control

The PanTilt (Absolute) Control is used to specify the pan and tilt settings.

The dwPanAbsolute is used to specify the pan setting in arc second units. 1 arc second is 1/3600
of a degree. Values range from –180*3600 arc second to +180*3600 arc second, or a subset
thereof, with the default set to zero. Positive values are clockwise from the origin (the camera
rotates clockwise when viewed from above), and negative values are counterclockwise from the
origin. This control must accept the GET_DEF request and return its default value.
The dwTiltAbsolute Control is used to specify the tilt setting in arc second units. 1 arc second is
1/3600 of a degree. Values range from –180*3600 arc second to +180*3600 arc second, or a
subset thereof, with the default set to zero. Positive values point the imaging plane up, and
negative values point the imaging plane down. This control must accept the GET_DEF request
and return its default value.

Table 4-21 PanTilt (Absolute) Control
Control Selector CT_PANTILT_ABSOLUTE_CONTROL
Mandatory Requests GET_CUR, GET_MIN, GET_MAX, GET_RES, GET_INFO,

GET_DEF
Optional Requests SET_CUR
wLength 8
Offset Field Size Value Description
0 dwPanAbsolute 4 Signed

number
The setting for the attribute of the
addressed Pan (Absolute) Control.

4 dwTiltAbsolute 4 Signed
number

The setting for the attribute of the
addressed Tilt (Absolute) Control.

Revision 1.1 June 1, 2005 88

USB Device Class Definition for Video Devices

4.2.2.1.14 PanTilt (Relative) Control
The PanTilt (Relative) Control is used to specify the pan and tilt direction to move.

The bPanRelative field is used to specify the pan direction to move. A value of 0 indicates to
stop the pan, a value of 1 indicates to start moving clockwise direction, and a value of 0xFF
indicates to start moving counterclockwise direction. The GET_DEF, GET_MIN, GET_MAX
and GET_RES requests will return zero for this field.

The bPanSpeed field is used to specify the speed of the movement for the Pan direction. A low
number indicates a slow speed and a high number indicates a higher speed. The GET_MIN,
GET_MAX and GET_RES requests are used to retrieve the range and resolution for this field.
The GET_DEF request is used to retrieve the default value for this field. If the control does not
support speed control for the Pan control, it will return the value 1 in this field for all these
requests.

The bTiltRelative field is used to specify the tilt direction to move. A value of zero indicates to
stop the tilt, a value of 1 indicates that the camera point the imaging plane up, and a value of
0xFF indicates that the camera point the imaging plane down. The GET_DEF, GET_MIN,
GET_MAX and GET_RES requests will return zero for this field.

The bTiltSpeed field is used to specify the speed of the movement for the Tilt direction. A low
number indicates a slow speed and a high number indicates a higher speed. The GET_MIN,
GET_MAX and GET_RES requests are used to retrieve the range and resolution for this field.
The GET_DEF request is used to retrieve the default value for this field. If the control does not
support speed control for the Tilt control, it will return the value 1 in this field for all these
requests.

If both Relative and Absolute Controls are supported, a SET_CUR to the Relative Control with a
value other than 0x00 shall result in a Control Change interrupt for the Absolute Control at the
end of the movement (see section 2.4.2.2, “Status Interrupt Endpoint”). The end of movement
can be due to physical device limits, or due to an explicit request by the host to stop the
movement. If the end of movement is due to physical device limits (such as a limit in range of
motion), a Control Change interrupt shall be generated for this Relative Control. If there is no
limit in range of motion, a Control Change interrupt is not required.

Table 4-22 PanTilt (Relative) Control
Control Selector CT_PANTILT_RELATIVE_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO, GET_DEF, GET_MIN,

GET_MAX, GET_RES
wLength 4
Offset Field Size Value Description
0 bPanRelative 1 Signed The setting for the attribute of the

Revision 1.1 June 1, 2005 89

USB Device Class Definition for Video Devices

number addressed Pan (Relative) Control:
0: Stop
1: moving to clockwise direction
0xFF: moving to counter clockwise
direction

1 bPanSpeed 1 Number Speed of the Pan movement
2 bTiltRelative 1 Signed

number
The setting for the attribute of the
addressed Tilt (Relative) Control:
0: Stop
1: point the imaging plane up
0xFF: point the imaging plane down

3 bTiltSpeed 1 Number Speed for the Tilt movement

4.2.2.1.15 Roll (Absolute) Control
The Roll (Absolute) Control is used to specify the roll setting in degrees. Values range from –
180 to +180, or a subset thereof, with the default being set to zero. Positive values cause a
clockwise rotation of the camera along the image viewing axis, and negative values cause a
counterclockwise rotation of the camera. This control must accept the GET_DEF request and
return its default value.

Table 4-23 Roll (Absolute) Control
Control Selector CT_ROLL_ABSOLUTE_CONTROL
Mandatory Requests GET_CUR, GET_MIN, GET_MAX, GET_RES, GET_INFO,

GET_DEF
Optional Requests SET_CUR
wLength 2
Offset Field Size Value Description
0 wRollAbsolute 2 Signed

number
The setting for the attribute of the
addressed Roll (Absolute) Control.

4.2.2.1.16 Roll (Relative) Control
The Roll (Relative) Control is used to specify the roll direction to move.

The bRollRelative field is used to specify the roll direction to move. A value of 0 indicates to
stop the roll, a value of 1 indicates to start moving in a clockwise rotation of the camera along
the image viewing axis, and a value of 0xFF indicates to start moving in a counterclockwise
direction. The GET_DEF, GET_MIN, GET_MAX and GET_RES requests will return zero for
this field.

Revision 1.1 June 1, 2005 90

USB Device Class Definition for Video Devices

The bSpeed is used to specify the speed of the roll movement. A low number indicates a slow
speed and a high number indicates a higher speed. The GET_MIN, GET_MAX and GET_RES
requests are used to retrieve the range and resolution for this field. The GET_DEF request is
used to retrieve the default value for this field. If the control does not support speed control, it
will return the value 1 in this field for all these requests.

If both Relative and Absolute Controls are supported, a SET_CUR to the Relative Control with a
value other than 0x00 shall result in a Control Change interrupt for the Absolute Control at the
end of the movement (see section 2.4.2.2, “Status Interrupt Endpoint”). The end of movement
can be due to physical device limits, or due to an explicit request by the host to stop the
movement. If the end of movement is due to physical device limits (such as a limit in range of
motion), a Control Change interrupt shall be generated for this Relative Control. If there is no
limit in range of motion, a Control Change interrupt is not required.

Table 4-24 Roll (Relative) Control
Control Selector CT_ROLL_RELATIVE_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO, GET_DEF, GET_MIN,

GET_MAX, GET_RES
wLength 2
Offset Field Size Value Description
0 bRollRelative 1 Signed

number
The setting for the attribute of the
addressed Roll (Relative) Control:
0: Stop
1: moving clockwise rotation
0xFF: moving counter clockwise rotation

1 bSpeed 1 Number Speed for the Roll movement

4.2.2.1.17 Privacy Control
The Privacy Control setting is used to prevent video from being acquired by the camera sensor.
A value of 0 indicates that the camera sensor is able to capture video images, and a value of 1
indicates that the camera sensor is prevented from capturing video images.
This control shall be reported as an AutoUpdate control.

Revision 1.1 June 1, 2005 91

USB Device Class Definition for Video Devices

Table 4-25 Privacy Shutter Control
Control Selector CT_PRIVACY_CONTROL
Mandatory Requests GET_CUR, GET_INFO
Optional Requests SET_CUR
wLength 1
Offset Field Size Value Description
0 bPrivacy 1 Boolean The setting for the attribute of the

addressed Privacy Control:
0: Open
1: Close

4.2.2.2 Selector Unit Control Requests
These requests are used to set or read an attribute of a Selector Control inside a Selector Unit of
the video function.

A Selector Unit represents a video stream source selector. The valid range for the CUR, MIN,
and MAX attributes is from one up to the number of Input Pins of the Selector Unit. This value
can be found in the bNrInPins field of the Selector Unit descriptor. The RES attribute can only
have a value of one.

Table 4-26 Selector Unit Control Requests
Control Selector SU_INPUT_SELECT_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_MIN, GET_MAX,GET_RES,

GET_INFO
wLength 1
Offset Field Size Value Description
0 bSelector 1 Number The setting for the attribute of the

Selector Control.

4.2.2.3 Processing Unit Control Requests
These requests are used to set or read an attribute of a video Control inside a Processing Unit of
the video function.

The following paragraphs present a detailed description of all possible Controls a Processing
Unit can incorporate. For each Control, the layout of the parameter block together with the
appropriate Control Selector is listed for all forms of the Get/Set Processing Unit Control request.
All values are interpreted as unsigned unless otherwise specified.

Revision 1.1 June 1, 2005 92

USB Device Class Definition for Video Devices

4.2.2.3.1 Backlight Compensation Control
The Backlight Compensation Control is used to specify the backlight compensation. A value of
zero indicates that the backlight compensation is disabled. A non-zero value indicates that the
backlight compensation is enabled. The device may support a range of values, or simply a binary
switch. If a range is supported, a low number indicates the least amount of backlight
compensation. The default value is implementation-specific, but enabling backlight
compensation is recommended. This control must accept the GET_DEF request and return its
default value.

Table 4-27 Backlight Compensation Control
Control Selector PU_BACKLIGHT_COMPENSATION_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_MIN, GET_MAX,

GET_RES, GET_INFO, GET_DEF
wLength 2
Offset Field Size Value Description
0 wBacklightCompensation 2 Number The setting for the attribute of the

addressed Backlight Compensation
control.

4.2.2.3.2 Brightness Control
This is used to specify the brightness. This is a relative value where increasing values indicate
increasing brightness. The MIN and MAX values are sufficient to imply the resolution, so the
RES value must always be 1. The MIN, MAX and default values are implementation dependent.
This control must accept the GET_DEF request and return its default value.

Table 4-28 Brightness Control
Control Selector PU_BRIGHTNESS_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_MIN, GET_MAX, GET_RES,

GET_INFO, GET_DEF
wLength 2
Offset Field Size Value Description
0 wBrightness 2 Signed

number
The setting for the attribute of the
addressed Brightness control.

4.2.2.3.3 Contrast Control
This is used to specify the contrast value. This is a relative value where increasing values
indicate increasing contrast. The MIN and MAX values are sufficient to imply the resolution, so
the RES value must always be 1. The MIN, MAX and default values are implementation
dependent. This control must accept the GET_DEF request and return its default value.

Revision 1.1 June 1, 2005 93

USB Device Class Definition for Video Devices

Table 4-29 Contrast Control
Control Selector PU_CONTRAST_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_MIN, GET_MAX, GET_RES,

GET_INFO, GET_DEF
wLength 2
Offset Field Size Value Description
0 wContrast 2 Number The setting for the attribute of the

addressed Contrast control.

4.2.2.3.4 Gain Control
This is used to specify the gain setting. This is a relative value where increasing values indicate
increasing gain. The MIN and MAX values are sufficient to imply the resolution, so the RES
value must always be 1. The MIN, MAX and default values are implementation dependent. This
control must accept the GET_DEF request and return its default value.

Table 4-30 Gain Control
Control Selector PU_GAIN_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_MIN, GET_MAX, GET_RES,

GET_INFO, GET_DEF
wLength 2
Offset Field Size Value Description
0 wGain 2 Number The setting for the attribute of the

addressed Gain control.

4.2.2.3.5 Power Line Frequency Control
This control allows the host software to specify the local power line frequency, in order for the
device to properly implement anti-flicker processing, if supported. The default is
implementation-specific. This control must accept the GET_DEF request and return its default
value.

Revision 1.1 June 1, 2005 94

USB Device Class Definition for Video Devices

Table 4-31 Power Line Frequency Control
Control Selector PU_POWER_LINE_FREQUENCY_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO, GET_DEF
wLength 1
Offset Field Size Value Description
0 bPowerLineFrequency 1 Number The setting for the attribute of the

addressed Power Line Frequency
control:
0: Disabled
1: 50 Hz
2: 60 Hz

4.2.2.3.6 Hue Control
This is used to specify the hue setting. The value of the hue setting is expressed in degrees
multiplied by 100. The required range must be a subset of -18000 to 18000 (-180 to +180
degrees). The default value must be zero. This control must accept the GET_DEF request and
return its default value.

Table 4-32 Hue Control
Control Selector PU_HUE_CONTROL
Mandatory Requests GET_CUR, GET_MIN, GET_MAX, GET_RES, GET_INFO,

GET_DEF
Optional Requests SET_CUR
wLength 2
Offset Field Size Value Description
0 wHue 2 Signed

number
The setting for the attribute of the
addressed Hue control.

4.2.2.3.7 Hue, Auto Control
The Hue Auto Control setting determines whether the device will provide automatic adjustment
of the related control. A value of 1 indicates that automatic adjustment is enabled. Attempts to
programmatically set the related control are then ignored. This control must accept the
GET_DEF request and return its default value.

Revision 1.1 June 1, 2005 95

USB Device Class Definition for Video Devices

Table 4-33 Hue, Auto Control
Control Selector PU_HUE_AUTO_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO, GET_DEF
wLength 1
Offset Field Size Value Description
0 bHueAuto 1 Number The setting for the attribute of the

addressed Hue, Auto control.

4.2.2.3.8 Saturation Control
This is used to specify the saturation setting. This is a relative value where increasing values
indicate increasing saturation. A Saturation value of 0 indicates grayscale. The MIN and MAX
values are sufficient to imply the resolution, so the RES value must always be 1. The MIN, MAX
and default values are implementation-dependent. This control must accept the GET_DEF
request and return its default value.

Table 4-34 Saturation Control
Control Selector PU_SATURATION_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_MIN, GET_MAX, GET_RES,

GET_INFO, GET_DEF
wLength 2
Offset Field Size Value Description
0 wSaturation 2 Number The setting for the attribute of the

addressed Saturation control.

4.2.2.3.9 Sharpness Control
This is used to specify the sharpness setting. This is a relative value where increasing values
indicate increasing sharpness, and the MIN value always implies "no sharpness processing",
where the device will not process the video image to sharpen edges. The MIN and MAX values
are sufficient to imply the resolution, so the RES value must always be 1. The MIN, MAX and
default values are implementation-dependent. This control must accept the GET_DEF request
and return its default value.

Revision 1.1 June 1, 2005 96

USB Device Class Definition for Video Devices

Table 4-35 Sharpness Control
Control Selector PU_SHARPNESS_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_MIN, GET_MAX, GET_RES,

GET_INFO, GET_DEF
wLength 2
Offset Field Size Value Description
0 wSharpness 2 Number The setting for the attribute of the

addressed Sharpness control.

4.2.2.3.10 Gamma Control
This is used to specify the gamma setting. The value of the gamma setting is expressed in gamma
multiplied by 100. The required range must be a subset of 1 to 500, and the default values are
typically 100 (gamma = 1) or 220 (gamma = 2.2). This control must accept the GET_DEF
request and return its default value.

Table 4-36 Gamma Control
Control Selector PU_GAMMA_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_MIN, GET_MAX, GET_RES,

GET_INFO, GET_DEF
wLength 2
Offset Field Size Value Description
0 wGamma 2 Number The setting for the attribute of the

addressed Gamma control.

4.2.2.3.11 White Balance Temperature Control
This is used to specify the white balance setting as a color temperature in degrees Kelvin. This is
offered as an alternative to the White Balance Component control. Minimum range should be
2800 (incandescent) to 6500 (daylight) for webcams and dual-mode cameras. The supported
range and default value for white balance temperature is implementation-dependent. This control
must accept the GET_DEF request and return its default value.

Table 4-37 White Balance Temperature Control
Control Selector PU_WHITE_BALANCE_TEMPERATURE_CONTROL
Mandatory Requests GET_CUR, GET_MIN, GET_MAX, GET_RES, GET_INFO,

GET_DEF
Optional Requests SET_CUR
wLength 2
Offset Field Size Value Description
0 wWhiteBalanceTe

mperature
2 Number The setting for the attribute of the addressed

White Balance Temperature control.

Revision 1.1 June 1, 2005 97

USB Device Class Definition for Video Devices

4.2.2.3.12 White Balance Temperature, Auto Control
The White Balance Temperature Auto Control setting determines whether the device will
provide automatic adjustment of the related control. A value of 1 indicates that automatic
adjustment is enabled. Attempts to programmatically set the related control are then ignored.
This control must accept the GET_DEF request and return its default value.

Table 4-38 White Balance Temperature, Auto Control
Control Selector PU_WHITE_BALANCE_TEMPERATURE_AUTO_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO, GET_DEF
wLength 1
Offset Field Size Value Description
0 bWhiteBalanceTe

mperatureAuto
1 Number The setting for the attribute of the addressed

White Balance Temperature, Auto control.

4.2.2.3.13 White Balance Component Control
This is used to specify the white balance setting as Blue and Red values for video formats. This
is offered as an alternative to the White Balance Temperature control. The supported range and
default value for white balance components is implementation-dependent. The device shall
interpret the controls as blue and red pairs. This control must accept the GET_DEF request and
return its default value.

Table 4-39 White Balance Component Control
Control Selector PU_WHITE_BALANCE_COMPONENT_CONTROL
Mandatory Requests GET_CUR, GET_MIN, GET_MAX, GET_RES,

GET_INFO, GET_DEF
Optional Requests SET_CUR
wLength 4
Offset Field Size Value Description
0 wWhiteBalanceBlue 2 Number The setting for the blue component of

the addressed White Balance
Component control.

1 wWhiteBalanceRed 2 Number The setting for the red component of
the addressed White Balance
Component control.

Revision 1.1 June 1, 2005 98

USB Device Class Definition for Video Devices

4.2.2.3.14 White Balance Component, Auto Control
The White Balance Component Auto Control setting determines whether the device will provide
automatic adjustment of the related control. A value of 1 indicates that automatic adjustment is
enabled. Attempts to programmatically set the related control are then ignored. This control must
accept the GET_DEF request and return its default value.

Table 4-40 White Balance Component, Auto Control
Control Selector PU_WHITE_BALANCE_COMPONENT_AUTO_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO, GET_DEF
wLength 1
Offset Field Size Value Description
0 bWhiteBalanceCo

mponentAuto
1 Number The setting for the attribute of the

addressed White Balance Component,
Auto control.

4.2.2.3.15 Digital Multiplier Control
This is used to specify the amount of Digital Zoom applied to the optical image. This is the
position within the range of possible values of multiplier m, allowing the multiplier resolution to
be described by the device implementation. The MIN and MAX values are sufficient to imply
the resolution, so the RES value must always be 1. The MIN, MAX and default values are
implementation dependent. If the Digital Multiplier Limit Control is supported, the MIN and
MAX values shall match the MIN and MAX values of the Digital Multiplier Control. The Digital
Multiplier Limit Control allows either the Device or the Host to establish a temporary upper limit
for the Z′cur value, thus reducing dynamically the range of the Digital Multiplier Control. If
Digital Multiplier Limit is used to decrease the Limit below the current Z′cur value, the Z′cur value
will be adjusted to match the new limit and the Digital Multiplier Control shall send a Control
Change Event to notify the host of the adjustment.

Table 4-41 Digital Multiplier Control
Control Selector PU_DIGITAL_MULTIPLIER_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_MIN, GET_MAX, GET_RES,

GET_INFO, GET_DEF
wLength 2
Offset Field Size Value Description
0 wMultiplierStep 2 Number The value Z′cur (see section 2.4.2.5.2

"Digital Zoom".)

4.2.2.3.16 Digital Multiplier Limit Control
This is used to specify an upper limit for the amount of Digital Zoom applied to the optical
image. This is the maximum position within the range of possible values of multiplier m. The

Revision 1.1 June 1, 2005 99

USB Device Class Definition for Video Devices

MIN and MAX values are sufficient to imply the resolution, so the RES value must always be 1.
The MIN, MAX and default values are implementation dependent.

Table 4-42 Digital Multiplier Limit Control
Control Selector PU_DIGITAL_MULTIPLIER_LIMIT_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_MIN, GET_MAX, GET_RES,

GET_INFO, GET_DEF
wLength 2
Offset Field Size Value Description
0 wMultiplierLimit 2 Number A value specifying the upper bound for

Z′cur (see section 2.4.2.5.2 "Digital
Zoom".)

4.2.2.3.17 Analog Video Standard Control
This is used to report the current Video Standard of the stream captured by the Processing Unit.

Table 4-43 Analog Video Standard Control
Control Selector PU_ANALOG_VIDEO_STANDARD_CONTROL
Mandatory Requests GET_CUR, GET_INFO
wLength 1
Offset Field Size Value Description
0 bVideoStandard 1 Number The Analog Video Standard of the input

video signal.
0: None
1: NTSC – 525/60
2: PAL – 625/50
3: SECAM – 625/50
4: NTSC – 625/50
5: PAL – 525/60
6-255: Reserved. Do not use.

4.2.2.3.18 Analog Video Lock Status Control
This is used to report whether the video decoder has achieved horizontal lock of the analog input
signal. If the decoder is locked, it is assumed that a valid video stream is being generated. This
control is to be supported only for analog video decoder functionality.

Revision 1.1 June 1, 2005 100

USB Device Class Definition for Video Devices

Table 4-44 Analog Video Lock Status Control
Control Selector PU_ANALOG_LOCK_STATUS_CONTROL
Mandatory Requests GET_CUR, GET_INFO
wLength 1
Offset Field Size Value Description
0 bStatus 1 Number 0: Video Decoder is locked.

1: Video Decoder is not locked.
2-255: Reserved. Do not use.

4.2.2.4 Extension Unit Control Requests
These requests are used to set or read a video Control within an Extension Unit.

Table 4-45 Extension Unit Control Requests
bmRequestType bRequest wValue wIndex wLength Data
00100001 SET_CUR

10100001 GET_CUR
GET_MIN
GET_MAX
GET_RES
GET_DEF
GET_LEN
GET_INFO

CS Extension
Unit ID and
Interface

Length of
parameter
block

Parameter
block

The bRequest field indicates which attribute the request is manipulating. The MIN, MAX, and
RES attributes are not supported for the Set request.

The wValue field specifies the Control Selector (CS) in the high byte and zero in the low byte.
The Control Selector indicates which vendor-defined control within the Extension Unit that this
request is manipulating. If the request specifies an unknown or unsupported CS to that Unit, the
control pipe must indicate a stall. However, if the request specifies an available control, the
request should succeed.

The range of CS values supported by the Extension Unit is dictated by the number of controls
specified by the bNumControls field in the Extension Unit descriptor. See section 3.7.2.6,
"Extension Unit Descriptor". The range shall be [1..bNumControls].

The GET_LEN request queries for the length of the parameter block of the specified control.
When issuing the GET_LEN request, the wLength field shall always be set to a value of 2 bytes.
The result returned shall be the length specified for all other requests on the same control.

All controls supported by the Extension Unit must support the following requests:

Revision 1.1 June 1, 2005 101

USB Device Class Definition for Video Devices

GET_CUR, GET_MIN, GET_MAX, GET_RES, GET_INFO, GET_DEF, GET_LEN.

The following request(s) are optional, depending on the control usage and behavior:
SET_CUR

All Extension Unit controls are vendor-defined. The vendor must provide the relevant host
software to program these controls. The generic host driver will not have knowledge of the
control semantics, but acts as a control transport between the vendor-provided host software and
the device.

However, by using the GET_LEN request, the host driver would be able to query the length and
raw data stored in the vendor-defined controls. While it would not be able to interpret this data, it
would be capable of saving and restoring these control settings if required.

4.3 VideoStreaming Requests
VideoStreaming requests can be directed either to the VideoStreaming interface or to the
associated video-data endpoint, depending on the location of the Control to be manipulated.

4.3.1 Interface Control Requests
These requests are used to set or read an attribute of an interface Control inside a particular
VideoStreaming interface of the video function.

Table 4-46 Interface Control Requests inside a Particular VideoStreaming Interface
bmRequestType bRequest wValue wIndex wLength Data

00100001 SET_CUR

10100001 GET_CUR
GET_MIN
GET_MAX
GET_RES
GET_DEF
GET_LEN
GET_INFO

CS Zero and
Interface

Length of
parameter
block

Parameter
block

The bRequest field indicates which attribute the request is manipulating.

The wValue field specifies the Control Selector (CS) in the high byte, and the low byte must be
set to zero. The CS indicates the type of Control that this request is manipulating. If the request
specifies an unknown CS to that endpoint, the control pipe must indicate a stall.

The VideoStreaming interface controls allow the host software to query and set parameters
related to the video stream format and the video stream encoder. These parameters include the

Revision 1.1 June 1, 2005 102

USB Device Class Definition for Video Devices

format, frame size and frame rate of the video stream, as well as the format and frame size of still
images captured by the device that are associated with the video stream. For devices that support
host-adjustable video stream encoder parameters, controls allowing the adjustment of the key
frame rate and compression quality, among other parameters, are also supported. Only Stream
Error Code Control supports interrupt with VideoStreaming interface.

4.3.1.1 Video Probe and Commit Controls
The streaming parameters selection process is based on a shared negotiation model between the
host and the video streaming interface, taking into account the following features:

• shared nature of the USB
• interdependency of streaming parameters
• payload independence
• modification of streaming parameters during streaming

This negotiation model is supported by the Video Probe and Commit controls. The Probe control
allows retrieval and negotiation of streaming parameters. When an acceptable combination of
streaming parameters has been obtained, the Commit control is used to configure the hardware
with the negotiated parameters from the Probe control.

Table 4-47 Video Probe and Commit Controls
Control Selector VS_PROBE_CONTROL

VS_COMMIT_CONTROL
Mandatory Requests See tables below
wLength 34
Offset Field Size Value Description
0 bmHint 2 Bitmap Bitfield control indicating to the

function what fields shall be kept fixed
(indicative only):
D0: dwFrameInterval
D1: wKeyFrameRate
D2: wPFrameRate
D3: wCompQuality
D4: wCompWindowSize
D15..5: Reserved (0)

The hint bitmap indicates to the video
streaming interface which fields shall
be kept constant during stream
parameter negotiation. For example, if
the selection wants to favor frame rate
over quality, the dwFrameInterval bit
will be set (1).

Revision 1.1 June 1, 2005 103

USB Device Class Definition for Video Devices

This field is set by the host, and is
read-only for the video streaming
interface.

2 bFormatIndex 1 Number Video format index from a format
descriptor.

Select a specific video stream format
by setting this field to the one-based
index of the associated format
descriptor. To select the first format
defined by a device, a value one (1) is
written to this field. This field must be
supported even if only one video
format is supported by the device.

This field is set by the host.

3 bFrameIndex 1 Number Video frame index from a frame
descriptor.

This field selects the video frame
resolution from the array of resolutions
supported by the selected stream. The
index value ranges from 1 to the
number of Frame descriptors following
a particular Format descriptor. This
field must be supported even if only
one video frame index is supported by
the device.

For video payloads with no defined
frame descriptor, this field shall be set
to zero (0).

This field is set by the host.

4 dwFrameInterval 4 Number Frame interval in 100 ns units.

This field sets the desired video frame
interval for the selected video stream
and frame index. The frame interval
value is specified in 100 ns units. The
device shall support the setting of all
frame intervals reported in the Frame
Descriptor corresponding to the
selected Video Frame Index. This field

Revision 1.1 June 1, 2005 104

USB Device Class Definition for Video Devices

must be implemented even if only one
video frame interval is supported by
the device.

When used in conjunction with an IN
endpoint, the host shall indicate its
preference during the Probe phase. The
value must be from the range of values
supported by the device.

When used in conjunction with an
OUT endpoint, the host shall accept
the value indicated by the device.

8 wKeyFrameRate 2 Number Key frame rate in key-frame per video-
frame units.

This field is only applicable to sources
(and formats) capable of streaming
video with adjustable compression
parameters. Use of this control is at the
discretion of the device, and is
indicated in the VS Input or Output
Header descriptor.

The Key Frame Rate field is used to
specify the compressor’s key frame
rate. For example, if one of every ten
encoded frames in a video stream
sequence is a key frame, this control
would report a value of 10. A value of
0 indicates that only the first frame is a
key frame.

When used in conjunction with an IN
endpoint, the host shall indicate its
preference during the Probe phase. The
value must be from the range of values
supported by the device.

When used in conjunction with an
OUT endpoint, the host shall accept
the value indicated by the device.

10 wPFrameRate 2 Number PFrame rate in PFrame/key frame
units.

Revision 1.1 June 1, 2005 105

USB Device Class Definition for Video Devices

This field is only applicable to sources
(and formats) capable of streaming
video with adjustable compression
parameters. Use of this control is at the
discretion of the device, and is
indicated in the VS Input or Output
Header descriptor.

The P Frame Rate Control is used to
specify the number of P frames per key
frame. As an example of the
relationship between the types of
encoded frames, suppose a key frame
occurs once in every 10 frames, and
there are 3 P frames per key frame.
The P frames will be spaced evenly
between the key frames. The other 6
frames, which occur between the key
frames and the P frames, will be bi-
directional (B) frames.

When used in conjunction with an IN
endpoint, the host shall indicate its
preference during the Probe phase. The
value must be from the range of values
supported by the device.

When used in conjunction with an
OUT endpoint, the host shall accept
the value indicated by the device.

12 wCompQuality 2 Number Compression quality control in
abstract units 0 (lowest) to 10000
(highest).

This field is only applicable to sources
(and formats) capable of streaming
video with adjustable compression
parameters. Use of this field is at the
discretion of the device, and is
indicated in the VS Input or Output
Header descriptor.

Revision 1.1 June 1, 2005 106

USB Device Class Definition for Video Devices

This field is used to specify the quality
of the video compression. Values for
this property range from 0 to 10000 (0
indicates the lowest quality, 10000 the
highest). The resolution reported by
this control will determine the number
of discrete quality settings that it can
support.

When used in conjunction with an IN
endpoint, the host shall indicate its
preference during the Probe phase. The
value must be from the range of values
supported by the device.

When used in conjunction with an
OUT endpoint, the host shall accept
the value indicated by the device.

14 wCompWindowSize 2 Number Window size for average bit rate
control.

This field is only applicable to sources
(and formats) capable of streaming
video with adjustable compression
parameters. Use of this control is at the
discretion of the device, and is
indicated in the VS Input or Output
Header descriptor.

The Compression Window Size
Control is used to specify the number
of encoded video frames over which
the average size cannot exceed the
specified data rate. For a window of
size n, the average frame size of any
consecutive n frames will not exceed
the stream's specified data rate.
Individual frames can be larger or
smaller.

For example, if the data rate has been
set to 100 kilobytes per second (KBps)
on a 10 frames per second (fps) movie

Revision 1.1 June 1, 2005 107

USB Device Class Definition for Video Devices

with a compression window size of 10,
the individual frames can be any size,
as long as the average size of a frame
in any 10-frame sequence is less than
or equal to 10 kilobytes.

When used in conjunction with an IN
endpoint, the host shall indicate its
preference during the Probe phase. The
value must be from the range of values
supported by the device.

When used in conjunction with an
OUT endpoint, the host shall accept
the value indicated by the device.

16 wDelay 2 Number Internal video streaming interface
latency in ms from video data capture
to presentation on the USB.

When used in conjunction with an IN
endpoint, this field is set by the device
and read only from the host.

When used in conjunction with an
OUT endpoint, this field is set by the
host and read only from the device.

18 dwMaxVideoFrameSize 4 Number Maximum video frame or codec-
specific segment size in bytes.

For frame-based formats, this field
indicates the maximum size of a single
video frame.

For stream-based formats, and when
this behavior is enabled via the
bmFramingInfo field (below), this
field indicates the maximum size of a
single codec-specific segment. The
sender is required to indicate a
segment boundary via the FID bit in
the payload header. This field is
ignored (for stream-based formats) if
the bmFramingInfo bits are not
enabled.

Revision 1.1 June 1, 2005 108

USB Device Class Definition for Video Devices

When used in conjunction with an IN
endpoint, this field is set by the device
and read only from the host.

When used in conjunction with an
OUT endpoint, this field is set by the
host and read only from the device.

22 dwMaxPayloadTransferSize 4 Number Specifies the maximum number of
bytes that the device can transmit or
receive in a single payload transfer.

This field is set by the device and read
only from the host. Some host
implementations restrict the maximum
value permitted for this field.

26 dwClockFrequency 4 Number The device clock frequency in Hz for
the specified format. This will specify
the units used for the time information
fields in the Video Payload Headers in
the data stream.

This parameter is set by the device and
read only from the host.

30 bmFramingInfo 1 Bitmap Bitfield control supporting the
following values:

D0: If set to 1, the Frame ID

(FID) field is required in the
Payload Header (see
description of D0 in section
2.4.3.3, “Video and Still
Image Payload Headers”).
The sender is required to
toggle the Frame ID at least
every
dwMaxVideoFrameSize
bytes (see above).

D1: If set to 1, indicates that the
End of Frame (EOF) field
may be present in the
Payload Header (see
description of D1 in section
2.4.3.3, “Video and Still

Revision 1.1 June 1, 2005 109

USB Device Class Definition for Video Devices

Image Payload Headers”). It
is an error to specify this bit
without also specifying D0.

D7..2: D7..2: Reserved (0)

This control indicates to the function
whether payload transfers will contain
out-of-band framing information in the
Video Payload Header (see section
2.4.3.3, “Video and Still Image
Payload Headers”).

For known frame-based formats (e.g.,
MJPEG, Uncompressed, DV), this
control is ignored.

For known stream-based formats, this
control allows the sender to indicate
that it will identify segment boundaries
in the stream, enabling low-latency
buffer handling by the receiver without
the overhead of parsing the stream
itself.

When used in conjunction with an IN
endpoint, this control is set by the
device, and is read-only from the host.

When used in conjunction with an
OUT endpoint, this parameter is set by
the host, and is read-only from the
device.

31 bPreferedVersion 1 Number The preferred payload format version
supported by the host or device for the
specified bFormatIndex value.

This parameter allows the host and
device to negotiate a mutually agreed
version of the payload format
associated with the bFormatIndex
field. The host initializes this and the
following bMinVersion and
bMaxVersion fields to zero on the
first Probe Set. Upon Probe Get, the

Revision 1.1 June 1, 2005 110

USB Device Class Definition for Video Devices

device shall return its preferred
version, plus the minimum and
maximum versions supported by the
device (see bMinVersion and
bMaxVersion below). The host may
issue a subsequent Probe Set/Get
sequence to specify its preferred
version (within the ranges returned in
bMinVersion and bMaxVersion from
the initial Probe Set/Get sequence).
The host is not permitted to alter the
bMinVersion and bMaxVersion
values.

This field will support up to 256 (0-
255) versions of a single payload
format. The version number is drawn
from the minor version of the Payload
Format specification. For example,
version 1.2 of a Payload Format
specification would result in a value of
2 for this parameter.

32 bMinVersion 1 Number The minimum payload format version
supported by the device for the
specified bFormatIndex value.

This value is initialized to zero by the
host and reset to a value in the range of
0 to 255 by the device. The host is not
permitted to modify this value (other
than to restart the negotiation by
setting bPreferredVersion,
bMinVersion and bMaxVersion to
zero).

33 bMaxVersion 1 Number The maximum payload format version
supported by the device for the
specified bFormatIndex value.

This value is initialized to zero by the
host and reset to a value in the range of
0 to 255 by the device. The host is not
permitted to modify this value (other
than to restart the negotiation by
setting bPreferredVersion,

Revision 1.1 June 1, 2005 111

USB Device Class Definition for Video Devices

bMinVersion and bMaxVersion to
zero).

4.3.1.1.1 Probe and Commit Operational Model
Unsupported fields shall be set to zero by the host and the device. Fields left for streaming
parameters negotiation shall be set to zero by the host. For example, after a SET_CUR request
initializing the FormatIndex and FrameIndex, the device will return the new negotiated field
values for the supported fields when retrieving the Probe control GET_CUR attribute.
In order to avoid negotiation loops, the device shall always return streaming parameters with
decreasing data rate requirements.
Unsupported streaming parameters shall be reset by the streaming interface to supported values
according to the negotiation loop avoidance rules. This convention allows the host to cycle
through supported values of a field.

Negotiation rules should be applied on the following fields in order of decreasing priority:

• Format Index, FrameIndex and MaxPayloadTransferSize
• Streaming fields set to zero with their associated Hint bit set to 1
• All the remaining fields set to zero

The following table describes VS_PROBE_CONTROL request attributes.

Table 4-48 VS_PROBE_CONTROL Requests
Attribute Description

GET_CUR Returns the current state of the streaming interface. All supported fields
set to zero will be returned with an acceptable negotiated value.
Prior to the initial SET_CUR operation, the GET_CUR state is
undefined. This request shall stall in case of negotiation failure.

GET_MIN Returns the minimum value for negotiated fields.
GET_MAX Returns the maximum value for negotiated fields.
GET_RES Return the resolution of each supported field in the Probe/Commit data

structure.
GET_DEF Returns the default value for the negotiated fields.
GET_LEN Returns the length of the Probe data structure.
GET_INFO Queries the capabilities and status of the Control. The value returned for

this request shall have bits D0 and D1 each set to one (1), and the
remaining bits set to zero (0) (see section 4.1.2, “Get Request”).

SET_CUR Sets the streaming interface Probe state. This is the attribute used for
stream parameter negotiation.

The following table describes VS_COMMIT_CONTROL request attributes.

Revision 1.1 June 1, 2005 112

USB Device Class Definition for Video Devices

Table 4-49 VS_COMMIT_CONTROL Requests
Attribute Description

GET_CUR Returns the current state of the streaming interface. Prior to the initial
SET_CUR operation, the GET_CUR state is undefined.

GET_MIN Not specified.
GET_MAX Not specified.
GET_RES Not specified.
GET_DEF Not specified.
GET_LEN Returns the length of the Commit data structure.
GET_INFO Queries the capabilities and status of the Control. The value returned for

this request shall have bits D0 and D1 each set to one (1), and the
remaining bits set to zero (0) (see section 4.1.2, “Get Request”).

SET_CUR Sets the device state. This sets the active device state; the field values
must be the result of a successful VS_PROBE_CONTROL(GET_CUR)
request. This request shall stall in case an unsupported state is specified.

4.3.1.1.2 Stream Negotiation Examples
Successful USB isochronous bandwidth negotiation.

Host Device

PROBE_CONTROL(SET_CUR)

PROBE_CONTROL(GET_CUR)

SELECT_ALTERNATE_INTERFACE

COMMIT_CONTROL(SET_CUR)

Figure 4-1 Successful USB Isochronous Bandwidth Negotiation

Revision 1.1 June 1, 2005 113

USB Device Class Definition for Video Devices

USB isochronous bandwidth negotiation failure.

Host Device

PROBE_CONTROL(SET_CUR)

PROBE_CONTROL(GET_CUR)

SELECT_ALTERNATE_INTERFACE

PROBE_CONTROL(SET_CUR)

PROBE_CONTROL(GET_CUR)

SELECT_ALTERNATE_INTERFACE

(Fail)

COMMIT_CONTROL(SET_CUR)

COMMIT_CONTROL(SET_CUR)

Figure 4-2 Failed USB Isochronous Bandwidth Negotiation

Revision 1.1 June 1, 2005 114

USB Device Class Definition for Video Devices

Dynamic stream settings modification while streaming.

Host Device

PROBE_CONTROL(SET_CUR)

PROBE_CONTROL(GET_CUR)

SELECT_ALTERNATE_INTERFACE

COMMIT_CONTROL(SET_CUR)

COMMIT_CONTROL(SET_CUR)

Streaming

Figure 4-3 Dynamic Stream Settings Modification while Streaming

Revision 1.1 June 1, 2005 115

USB Device Class Definition for Video Devices

4.3.1.2 Video Still Probe Control and Still Commit Control
These still-image controls are required for video functions supporting method 2 or 3 for still-
image retrieval.

Table 4-50 Video Still Probe Control and Still Commit Control
Control Selector VS_STILL_PROBE_CONTROL

VS_STILL_COMMIT_CONTROL
Mandatory Requests See tables below
wLength 11
Offset Field Size Value Description
0 bFormatIndex 1 Number Video format index from a format

descriptor.
A specific still-image format is
selected by setting this field to the
one-based index for the associated
format descriptor. To select the first
format defined by a device, a value
of 1 is written to this control.

1 bFrameIndex 1 Number Video frame index from a frame
descriptor.
This field selects the still-image
frame resolution from the array of
resolutions supported by the selected
still-image format. The index value
ranges from one to the number of
Still Image Size Patterns reported by
the selected Still Image Frame
descriptor.

2 bCompressionIndex 1 Number Compression index from a frame
descriptor.
This field selects the still-image
frame compression from the array of
compression patterns supported by
the selected still-image format. The
index value ranges from one to the
number of Still Image Compression
Patterns reported by the selected Still
Image Frame descriptor.

3 dwMaxVideoFrameSize 4 Number Maximum still image size in bytes.

This field indicates the maximum
size of a single still image.
This parameter is set by the device
and read only from the host.

Revision 1.1 June 1, 2005 116

USB Device Class Definition for Video Devices

7 dwMaxPayloadTransferSize 4 Number Specifies the maximum number of
bytes that the device can transmit or
receive in a single payload transfer.

The following table describes VS_STILL_PROBE_CONTROL request attributes:

Table 4-51 VS_STILL_PROBE_CONTROL Requests
Attribute Description

GET_CUR Returns the current state of the device. Prior to the initial SET_CUR
operation, the GET_CUR state is undefined.

GET_MIN Returns the minimum value for negotiated fields.
GET_MAX Returns the maximum value for negotiated fields.
GET_RES Not specified.
GET_DEF Returns the default value for negotiated fields.
GET_LEN Returns the length of the Probe data structure.
GET_INFO Queries the capabilities and status of the Control. The value returned for

this request shall have bits D0 and D1 each set to one (1), and the
remaining bits set to zero (0) (see section 4.1.2, “Get Request”).

SET_CUR Sets the streaming interface state. This is the state used for stream
parameters negotiations.

The following table describes VS_STILL_COMMIT_CONTROL request attributes:

Table 4-52 VS_STILL_COMMIT_CONTROL Requests
Attribute Description

GET_CUR Returns the current state of the device. After device configuration, this
state is undefined.

GET_MIN Not specified.
GET_MAX Not specified.
GET_RES Not specified.
GET_DEF Not specified.
GET_LEN Returns the length of the Commit data structure.
GET_INFO Queries the capabilities and status of the Control. The value returned for

this request shall have bits D0 and D1 each set to one (1), and the
remaining bits set to zero (0) (see section 4.1.2, “Get Request”).

SET_CUR Sets the device state. This sets the active device state; the field values
must be the result of a VS_STILL_PROBE_CONTROL(GET_CUR)
request. When the associated still-image pipe is active, this attribute
cannot be used and the control pipe shall indicate a stall for this request.

4.3.1.3 Synch Delay Control
The purpose for Synch Delay Control is to dynamically synchronize multiple video streams from
a device to host, or from multiple devices to the host to compensate for differing latencies among

Revision 1.1 June 1, 2005 117

USB Device Class Definition for Video Devices

multiple streams. Latency is the internal delay of the source from acquisition to data delivery on
the bus.

Only those devices that are capable of video streaming with adjustable delay latency parameters
support this control.

The Control is used to notify the video application buffer memory manager on the device to
control an internal latency by controlling output timing of the video data to its endpoint.

It is the responsibility of the host (video sink) to synchronize streams by scheduling the
rendering of samples at the correct moment, taking into account the internal delays of all media
streams being rendered.

Table 4-53 Synch Delay Control
Control Selector VS_SYNCH_DELAY_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_MIN, GET_MAX, GET_RES,

GET_INFO, GET_DEF
wLength 2
Offset Field Size Value Description
0 wDelay 2 Number Delay from the time that packet should

be sent. It is expressed in microsecond
units.

4.3.1.4 Still Image Trigger Control
This control notifies the device to begin sending still-image data over the relevant isochronous or
bulk pipe. A dedicated still-image bulk pipe is only used for method 3 of still image capture.
This control shall only be set while streaming is occurring, and the hardware shall reset it to the
"Normal Operation" mode after the still image has been sent. This control is only required if the
device supports method 2 or method 3 of still-image retrieval. See section 2.4.2.4 "Still Image
Capture".

Table 4-54 Still Image Trigger Control
Control Selector VS_STILL_IMAGE_TRIGGER_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO
wLength 1
Offset Field Size Value Description
0 bTrigger 1 Number The setting for the Still Image Trigger

Control:
0: Normal operation.
1: Transmit still image.
2: Transmit still image via dedicated bulk
pipe.
3: Abort still image transmission.

Revision 1.1 June 1, 2005 118

USB Device Class Definition for Video Devices

4.3.1.5 Generate Key Frame Control
This control is only supported by devices capable of streaming video with adjustable
compression parameters, and support for this control is indicated in the VideoStreaming Header
descriptor.

The Generate Key Frame Control is used to notify the video encoder on the device to generate a
key frame in the device stream at its earliest opportunity. After the key frame has been generated,
the device shall reset the control to the “Normal Operation” mode. This control is only applicable
to video formats that support temporal compression (such as MPEG-2 Video), and while
streaming is occurring. In all other cases, the device shall respond to requests by indicating a stall
on the control pipe.

Table 4-55 Generate Key Frame Control
Control Selector VS_GENERATE_KEY_FRAME_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_INFO
wLength 1
Offset Field Size Value Description
0 bGenerateKeyFrame 1 Number The setting for the attribute of the

addressed Generate Key Frame control:
0: Normal operation
1: Generate Key Frame

4.3.1.6 Update Frame Segment Control
This control is only supported by devices capable of streaming video with adjustable
compression parameters, and support for this control is indicated in the VideoStreaming Header
descriptor.

The Update Frame Segment Control is used to notify the video encoder on the device to encode
the specified range of video frame segments with intra coding (no dependency on surrounding
frames) at its earliest opportunity. A video frame segment corresponds to a group of macroblocks
that can be decoded independently, such as a slice in MPEG Video, or a Group of Blocks in
H.26x Video. This control is only applicable to video formats that support the concept of a video
frame segment, and while streaming is occurring. In all other cases, the device shall respond to
requests by indicating a stall on the control pipe.

The device will indicate the number of frame segments that it supports through the GET_MAX
request, for which the device will indicate the maximum frame segment index supported in both
the bStartFrameSegment and bEndFrameSegment fields. The minimum value for these fields
shall always be zero. The resolution for this control shall always be set to 1.

Revision 1.1 June 1, 2005 119

USB Device Class Definition for Video Devices

Table 4-56 Update Frame Segment Control
Control Selector VS_UPDATE_FRAME_SEGMENT_CONTROL
Mandatory Requests SET_CUR, GET_CUR, GET_MIN, GET_MAX, GET_RES,

GET_INFO, GET_DEF
wLength 2
Offset Field Size Value Description
0 bStartFrameSegment 1 Number The zero-based index of the first frame

segment in the range to update
1 bEndFrameSegment 1 Number The zero-based index of the last frame

segment in the range to update

4.3.1.7 Stream Error Code Control
This read-only control indicates the cause of a stream error that may arise during video or still-
image transfer. In such cases, the device will update this control with the appropriate code to
indicate the cause of the error.

The host software should send a GET_CUR request to this control to determine the error when
one of the following events occurs:

- The Error bit in the video or still image payload header is set by the device (see section
2.4.3.2.2, "Sample Isochronous Transfers").

- The device issues a "Stream Error" interrupt to the host, with the source being the Stream
Error Code Control (see section 2.4.2.2, "Status Interrupt Endpoint").

- A bulk video endpoint returns a STALL packet to the host in the data or handshake stage
of the transaction.

For scenarios where the host is transmitting video data to the device, the host can not use the
Error bit in the payload header to detect a device error. Therefore, in order to determine when a
streaming error occurs, the host must rely on either a Control Change interrupt from the device
or a bulk endpoint stall.

Table 4-57 Stream Error Code Control
Control Selector VS_STREAM_ERROR_CODE_CONTROL
Mandatory Requests GET_CUR, GET_INFO
wLength 1
Offset Field Size Value Description
0 bStreamErrorCode 1 Number 0: No Error.

1: Protected content – This situation
occurs if the data source device detects
that the video or still-image data is
protected and cannot be transmitted. In
this case, empty packets containing only
headers will be sent for the duration of

Revision 1.1 June 1, 2005 120

USB Device Class Definition for Video Devices

the protected content.

2: Input buffer underrun – If the data
source device is not able to supply data at
the requested rate, it will transmit empty
packets containing only headers for the
duration of the buffer underrun.

3. Data discontinuity - Indicates a data
discontinuity (arising from bad media,
encoder errors, etc.) preceding the data
payload in the current transfer.

4: Output buffer underrun – The data sink
device is not being supplied with data at a
sufficient rate.

5: Output buffer overrun – The data sink
device is being supplied with data at a
rate exceeding its buffering capabilities.

6: Format change – A dynamic format
change event occured. See section
2.4.3.6, "Dynamic Format Change
Support".

7: Still image capture error - An error
occured during still-image capture.

8: Unknown error.

Revision 1.1 June 1, 2005 121

USB Device Class Definition for Video Devices

Appendix A. Video Device Class Codes

A.1. Video Interface Class Code

Table A- 1 Video Interface Class Code
Video Interface Class Code Value

CC_VIDEO 0x0E

A.2. Video Interface Subclass Codes

Table A- 2 Video Interface Subclass Codes
Video Subclass Code Value

SC_UNDEFINED 0x00
SC_VIDEOCONTROL 0x01
SC_VIDEOSTREAMING 0x02
SC_VIDEO_INTERFACE_COLLECTION 0x03

A.3. Video Interface Protocol Codes

Table A- 3 Video Interface Protocol Codes
Video Protocol Code Value

PC_PROTOCOL_UNDEFINED 0x00

A.4. Video Class-Specific Descriptor Types

Table A- 4 Video Class-Specific Descriptor Types
Descriptor Type Value

CS_UNDEFINED 0x20
CS_DEVICE 0x21
CS_CONFIGURATION 0x22
CS_STRING 0x23
CS_INTERFACE 0x24
CS_ENDPOINT 0x25

A.5. Video Class-Specific VC Interface Descriptor Subtypes

Table A- 5 Video Class-Specific VC Interface Descriptor Subtypes
Descriptor Subtype Value

VC_DESCRIPTOR_UNDEFINED 0x00

Revision 1.1 June 1, 2005 122

USB Device Class Definition for Video Devices

VC_HEADER 0x01
VC_INPUT_TERMINAL 0x02
VC_OUTPUT_TERMINAL 0x03
VC_SELECTOR_UNIT 0x04
VC_PROCESSING_UNIT 0x05
VC_EXTENSION_UNIT 0x06
See “Universal Serial Bus Device Class Definition for Video Devices: Identifiers” for additional
idenfiers and values.

A.6. Video Class-Specific VS Interface Descriptor Subtypes

Table A- 6 Video Class-Specific VS Interface Descriptor Subtypes
Descriptor Subtype Value

VS_ UNDEFINED 0x00
VS_INPUT_HEADER 0x01
VS_OUTPUT_HEADER 0x02
VS_STILL_IMAGE_FRAME 0x03
VS_FORMAT_UNCOMPRESSED 0x04
VS_FRAME_UNCOMPRESSED 0x05
VS_FORMAT_MJPEG 0x06
VS_FRAME_MJPEG 0x07
Reserved 0x08
Reserved 0x09
VS_FORMAT_MPEG2TS 0x0A
Reserved 0x0B
VS_FORMAT_DV 0x0C
VS_COLORFORMAT 0x0D
Reserved 0x0E
Reserved 0x0F
VS_FORMAT_FRAME_BASED 0x10
VS_FRAME_FRAME_BASED 0x11
VS_FORMAT_STREAM_BASED 0x12
See “Universal Serial Bus Device Class Definition for Video Devices: Identifiers” for additional
idenfiers and values.

A.7. Video Class-Specific Endpoint Descriptor Subtypes

Table A- 7 Video Class-Specific Endpoint Descriptor Subtypes
Descriptor Subtype Value

EP_UNDEFINED 0x00
EP_GENERAL 0x01

Revision 1.1 June 1, 2005 123

USB Device Class Definition for Video Devices

EP_ENDPOINT 0x02
EP_INTERRUPT 0x03

A.8. Video Class-Specific Request Codes

Table A- 8 Video Class-Specific Request Codes
Class-Specific Request Code Value

RC_UNDEFINED 0x00
SET_CUR 0x01
GET_CUR 0x81
GET_MIN 0x82
GET_MAX 0x83
GET_RES 0x84
GET_LEN 0x85
GET_INFO 0x86
GET_DEF 0x87

A.9. Control Selector Codes

A.9.1. VideoControl Interface Control Selectors

Table A- 9 VideoControl Interface Control Selectors
Control Selector Value

VC _CONTROL_ UNDEFINED 0x00
VC_VIDEO_POWER_MODE_CONTROL 0x01
VC_REQUEST_ERROR_CODE_CONTROL 0x02
Reserved 0x03

A.9.2. Terminal Control Selectors

Table A- 10 Terminal Control Selectors
Control Selector Value

TE_CONTROL_UNDEFINED 0x00

A.9.3. Selector Unit Control Selectors

Table A- 11 Selector Unit Control Selectors
Control Selector Value

SU_CONTROL_UNDEFINED 0x00
SU_INPUT_SELECT_CONTROL 0x01

Revision 1.1 June 1, 2005 124

USB Device Class Definition for Video Devices

A.9.4. Camera Terminal Control Selectors

Table A- 12 Camera Terminal Control Selectors
Control Selector Value

CT_CONTROL_UNDEFINED 0x00
CT_SCANNING_MODE_CONTROL 0x01
CT_AE_MODE_CONTROL 0x02
CT_AE_PRIORITY_CONTROL 0x03
CT_EXPOSURE_TIME_ABSOLUTE_CONTROL 0x04
CT_EXPOSURE_TIME_RELATIVE_CONTROL 0x05
CT_FOCUS_ABSOLUTE_CONTROL 0x06
CT_FOCUS_RELATIVE_CONTROL 0x07
CT_FOCUS_AUTO_CONTROL 0x08
CT_IRIS_ABSOLUTE_CONTROL 0x09
CT_IRIS_RELATIVE_CONTROL 0x0A
CT_ZOOM_ABSOLUTE_CONTROL 0x0B
CT_ZOOM_RELATIVE_CONTROL 0x0C
CT_PANTILT_ABSOLUTE_CONTROL 0x0D
CT_PANTILT_RELATIVE_CONTROL 0x0E
CT_ROLL_ABSOLUTE_CONTROL 0x0F
CT_ROLL_RELATIVE_CONTROL 0x10
CT_PRIVACY_CONTROL 0x11

A.9.5. Processing Unit Control Selectors

Table A- 13 Processing Unit Control Selectors
Control Selector Value

PU_CONTROL_UNDEFINED 0x00
PU_BACKLIGHT_COMPENSATION_CONTROL 0x01
PU_BRIGHTNESS_CONTROL 0x02
PU_CONTRAST_CONTROL 0x03
PU_GAIN_CONTROL 0x04
PU_POWER_LINE_FREQUENCY_CONTROL 0x05
PU_HUE_CONTROL 0x06
PU_SATURATION_CONTROL 0x07
PU_SHARPNESS_CONTROL 0x08
PU_GAMMA_CONTROL 0x09
PU_WHITE_BALANCE_TEMPERATURE_CONTROL 0x0A
PU_WHITE_BALANCE_TEMPERATURE_AUTO_CONTROL 0x0B
PU_WHITE_BALANCE_COMPONENT_CONTROL 0x0C

Revision 1.1 June 1, 2005 125

USB Device Class Definition for Video Devices

PU_WHITE_BALANCE_COMPONENT_AUTO_CONTROL 0x0D
PU_DIGITAL_MULTIPLIER_CONTROL 0x0E
PU_DIGITAL_MULTIPLIER_LIMIT_CONTROL 0x0F
PU_HUE_AUTO_CONTROL 0x10
PU_ANALOG_VIDEO_STANDARD_CONTROL 0x11
PU_ANALOG_LOCK_STATUS_CONTROL 0x12

A.9.6. Extension Unit Control Selectors

Table A- 14 Extension Unit Control Selectors
Control Selector Value

XU_CONTROL_UNDEFINED 0x00

A.9.7. VideoStreaming Interface Control Selectors

Table A- 15 VideoStreaming Interface Control Selectors
Control Selector Value

VS_CONTROL_UNDEFINED 0x00
VS_PROBE_CONTROL 0x01
VS_COMMIT_CONTROL 0x02
VS_STILL_PROBE_CONTROL 0x03
VS_STILL_COMMIT_CONTROL 0x04
VS_STILL_IMAGE_TRIGGER_CONTROL 0x05
VS_STREAM_ERROR_CODE_CONTROL 0x06
VS_GENERATE_KEY_FRAME_CONTROL 0x07
VS_UPDATE_FRAME_SEGMENT_CONTROL 0x08
VS_SYNCH_DELAY_CONTROL 0x09

A.9.8. Additional Control Selectors
See “Universal Serial Bus Device Class Definition for Video Devices: Identifiers” for additional
selectors.

Revision 1.1 June 1, 2005 126

USB Device Class Definition for Video Devices

Appendix B. Terminal Types
The following is a list of possible Terminal types. This list is non-exhaustive and could be
expanded in the future.

B.1. USB Terminal Types
These Terminal types describe Terminals that handle signals carried over the USB, through
isochronous or bulk pipes. These Terminal types are valid for both Input and Output Terminals.

Table B- 1 USB Terminal Types
Terminal Type Code I/O Description

TT_VENDOR_SPECIFIC 0x0100 I/O A Terminal dealing with a
signal carried over a
vendor-specific interface.
The vendor-specific
interface descriptor must
contain a field that
references the Terminal.

TT_STREAMING 0x0101 I/O A Terminal dealing with a
signal carried over an
endpoint in a
VideoStreaming interface.
The VideoStreaming
interface descriptor points to
the associated Terminal
through the bTerminalLink
field.

See “Universal Serial Bus Device Class Definition for Video Devices: Identifiers” for additional
idenfiers and values.

Revision 1.1 June 1, 2005 127

USB Device Class Definition for Video Devices

B.2. Input Terminal Types
These Terminal Types describe Terminals that are designed to capture video. They either are
physically part of the video function or can be assumed to be connected to it in normal operation.
These Terminal Types are valid only for Input Terminals.

Table B- 2 Input Terminal Types
Terminal Type Code I/O Description

ITT_ VENDOR_SPECIFIC 0x0200 I Vendor-Specific Input
Terminal.

ITT_CAMERA 0x0201 I Camera sensor. To be used
only in Camera Terminal
descriptors.

ITT_MEDIA_TRANSPORT_INPUT 0x0202 I Sequential media. To be
used only in Media
Transport Terminal
Descriptors.

See “Universal Serial Bus Device Class Definition for Video Devices: Identifiers” for additional
idenfiers and values.

B.3. Output Terminal Types
These Terminal types describe Terminals that are designed to render video. They are either
physically part of the video function or can be assumed to be connected to it in normal operation.
These Terminal types are only valid for Output Terminals.

Table B- 3 Output Terminal Types
Terminal Type Code I/O Description

OTT_ VENDOR_SPECIFIC 0x0300 O Vendor-Specific Output
Terminal.

OTT_DISPLAY 0x0301 O Generic display (LCD,
CRT, etc.).

OTT_MEDIA_TRANSPORT_OUTPUT 0x0302 O Sequential media . To be
used only in Media
Transport Terminal
Descriptors.

See “Universal Serial Bus Device Class Definition for Video Devices: Identifiers” for additional
idenfiers and values.

Revision 1.1 June 1, 2005 128

USB Device Class Definition for Video Devices

B.4. External Terminal Types
These Terminal types describe external resources and connections that do not fit under the
categories of Input or Output Terminals because they do not necessarily translate video signals to
or from the user of the computer. Most of them may be either Input or Output Terminals.

Table B- 4 External Terminal Types
Terminal type Code I/O Description

EXTERNAL_ VENDOR_SPECIFIC 0x0400 I/O Vendor-Specific External
Terminal.

COMPOSITE_CONNECTOR 0x0401 I/O Composite video connector.
SVIDEO_CONNECTOR 0x0402 I/O S-video connector.
COMPONENT_CONNECTOR 0x0403 I/O Component video connector.
See “Universal Serial Bus Device Class Definition for Video Devices: Identifiers” for additional
idenfiers and values.

Revision 1.1 June 1, 2005 129

USB Device Class Definition for Video Devices

Appendix C. Video and Still Image Formats

C.1. Supported video and still image formats
This specification is designed to be format-agnostic, and will support any present or future video
or still image format. The video and still image formats supported by the device are reported to
the host software via format descriptors (see section 3.9.2.3, "Payload Format Descriptors").

C.2. Proprietary video formats
New or proprietary video and still-image formats must be defined outside of this specification
via Payload Format Specifications. . The host software will require a matching video encoder or
decoder module.

Revision 1.1 June 1, 2005 130

	Introduction
	Purpose
	Scope
	Related Documents
	Document Conventions
	Terms and Abbreviations

	Functional Characteristics
	Video Interface Class
	Video Interface Subclass and Protocol
	Video Function Topology
	Input Terminal
	Output Terminal
	Camera Terminal
	Selector Unit
	Processing Unit
	Extension Unit

	Operational Model
	Video Interface Collection
	VideoControl Interface
	Control Endpoint
	Status Interrupt Endpoint
	Hardware Trigger Interrupts
	Still Image Capture
	Optical and Digital Zoom
	Optical Zoom
	Digital Zoom
	Relationship between Optical and Digital Zoom
	Absolute vs. Relative Zoom

	VideoStreaming Interface
	Stream Bandwidth Selection
	Video and Still Image Samples
	Sample Bulk Transfers
	Sample Isochronous Transfers

	Video and Still Image Payload Headers
	Stream Synchronization and Rate Matching
	Latency
	Clock Reference
	Presentation Time

	Dynamic Frame Interval Support
	Dynamic Format Change Support
	Data Format Classes

	Control Transfer and Request Processing

	Descriptors
	Descriptor Layout Overview
	Device Descriptor
	Device_Qualifier Descriptor
	Configuration Descriptor
	Other_Speed_Configuration Descriptor
	Interface Association Descriptor
	VideoControl Interface Descriptors
	Standard VC Interface Descriptor
	Class-Specific VC Interface Descriptor
	Input Terminal Descriptor
	Output Terminal Descriptor
	Camera Terminal Descriptor
	Selector Unit Descriptor
	Processing Unit Descriptor
	Extension Unit Descriptor

	VideoControl Endpoint Descriptors
	VC Control Endpoint Descriptors
	Standard VC Control Endpoint Descriptor
	Class-Specific VC Control Endpoint Descriptor

	VC Interrupt Endpoint Descriptors
	Standard VC Interrupt Endpoint Descriptor
	Class-specific VC Interrupt Endpoint Descriptor

	VideoStreaming Interface Descriptors
	Standard VS Interface Descriptor
	Class-Specific VS Interface Descriptors
	Input Header Descriptor
	Output Header Descriptor
	Payload Format Descriptors
	Video Frame Descriptor
	Still Image Frame Descriptor
	Color Matching Descriptor

	VideoStreaming Endpoint Descriptors
	VS Video Data Endpoint Descriptors
	Standard VS Isochronous Video Data Endpoint Descriptor
	Standard VS Bulk Video Data Endpoint Descriptor

	VS Bulk Still Image Data Endpoint Descriptors
	Standard VS Bulk Still Image Data Endpoint Descriptor

	String Descriptors

	Class-Specific Requests
	Request Layout
	Set Request
	Get Request

	VideoControl Requests
	Interface Control Requests
	Power Mode Control
	Request Error Code Control

	Unit and Terminal Control Requests
	Camera Terminal Control Requests
	Scanning Mode Control
	Auto-Exposure Mode Control
	Auto-Exposure Priority Control
	Exposure Time (Absolute) Control
	Exposure Time (Relative) Control
	Focus (Absolute) Control
	Focus (Relative) Control
	Focus, Auto Control
	Iris (Absolute) Control
	Iris (Relative) Control
	Zoom (Absolute) Control
	Zoom (Relative) Control
	PanTilt (Absolute) Control
	PanTilt (Relative) Control
	Roll (Absolute) Control
	Roll (Relative) Control
	Privacy Control

	Selector Unit Control Requests
	Processing Unit Control Requests
	Backlight Compensation Control
	Brightness Control
	Contrast Control
	Gain Control
	Power Line Frequency Control
	Hue Control
	Hue, Auto Control
	Saturation Control
	Sharpness Control
	Gamma Control
	White Balance Temperature Control
	White Balance Temperature, Auto Control
	White Balance Component Control
	White Balance Component, Auto Control
	Digital Multiplier Control
	Digital Multiplier Limit Control
	Analog Video Standard Control
	Analog Video Lock Status Control

	Extension Unit Control Requests

	VideoStreaming Requests
	Interface Control Requests
	Video Probe and Commit Controls
	Probe and Commit Operational Model
	Stream Negotiation Examples

	Video Still Probe Control and Still Commit Control
	Synch Delay Control
	Still Image Trigger Control
	Generate Key Frame Control
	Update Frame Segment Control
	Stream Error Code Control

	Video Device Class Codes
	Video Interface Class Code
	Video Interface Subclass Codes
	Video Interface Protocol Codes
	Video Class-Specific Descriptor Types
	Video Class-Specific VC Interface Descriptor Subtypes
	Video Class-Specific VS Interface Descriptor Subtypes
	Video Class-Specific Endpoint Descriptor Subtypes
	Video Class-Specific Request Codes
	Control Selector Codes
	VideoControl Interface Control Selectors
	Terminal Control Selectors
	Selector Unit Control Selectors
	Camera Terminal Control Selectors
	Processing Unit Control Selectors
	Extension Unit Control Selectors
	VideoStreaming Interface Control Selectors
	Additional Control Selectors
	Terminal Types
	USB Terminal Types
	Input Terminal Types
	Output Terminal Types
	External Terminal Types
	Video and Still Image Formats
	Supported video and still image formats
	Proprietary video formats

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 1200
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 4.00000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.33333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

